Курсовая работа: Вакуумное напыление. Вакуумная установка – применение и виды вакуумных установок

Основным функциональным предназначением вакуумной установки, является создание и поддержание технического вакуума, который достигается путем откачивания смеси из системы. Широкое применение вакуумным установкам находится в металлургической, текстильной, химической, автомобильной, пищевой и фармацевтической сферах. К основным деталям установки относится насос, панель с фильтрами, блок управления камера.

Навигация:

Применение вакуумных установок

Вакуумные установки могут применяться для проведения лабораторных исследований. Входит в состав микроскопов, хроматографов, испарителей и систем фильтрации. Для этих целей может подойти агрегат, который не будет занимать большую площадь. Производительность таких агрегатов не стоит на первом месте. Чаще всего это форвакуумный или турбомолекулярный насос. При работе с агрессивными газами лучший вариант – мембранный насос.

Вакуумные установки играют немаловажную роль в испытательном оборудовании. Они обеспечивают необходимую скороподъемность летательным аппаратам. Для того чтобы процесс взлета или посадки протекал успешно, необходимо обеспечить быструю скорость откачки.

Сухие насосы используются для полупроводниковых и напылительных вакуумных установок, для осаждения материалов. Отлично подойдут для создания сверхвысокого вакуума. К ним относятся турбомолекулярные и криогенные насосы.

В металлургической промышленности активно используются насосы, которые обладают достаточной пропускной способностью. Они должны быть износостойкими, так как в системе имеется пыль и грязь. Отлично справятся с задачами в промышленной сфере когтевые и винтовые насосы, выполняющие форвакуумную откачку. Возможно применение диффузионных насосов.

Вакуумная установка 976А относится к лабораторному типу. Она предназначена для определения водонасыщенности асфальтобетона в лабораторных условиях. Рабочий объем камеры составляет 2 л. Вакуумная установка способна создать конечный вакуум значением 1х10-2.

Элементы вакуумных установок

Вакуумные установки создают и поддерживают рабочий вакуум в определенном герметичном объеме. Как правило, для этого используются элементы, имеющие одинаковое предназначение в различных видах установок. В их состав входит блок управления со стойкой управления, вакуумный блок, подколпачное устройство, системы охлаждения и вакуумная система и привод подъема колпака. Вакуумная система состоит из насоса любого типа, вакуумного агрегата, трубопроводов, вакуумметра и электромагнитного натекателя.

Вакуумные установки Busch

Вакуумные установки Busch – это, в первую очередь, качественные вакуумные насосы. Компания выпускает такие установки, как пластинчато-роторная модель вакуумного насоса R5. Она отличается высоким качеством и производительностью. Предельное давления агрегата составляет от 0,1 до 20 гПа. Скорость откачки среды достигает 1800 м3/ч. Во вторую очередь – это кулачковые насосы и компрессоры. Одним из таковых является модель Mink. Широко применяется в промышленности. Особенно там, где необходимо поддержание постоянного уровня вакуума. Предельное давление составляет от 20 до 250 гПа. Скорость откачки может достигать 1150 м3/ч.

Вакуумные установки Булат

Одним из примеров установок для нанесения тонкопленочных покрытий, является модель Булат. Она производит нанесение пленки вакуумно-плазменным способом. Может производить покрытие посредствам других электропроводящих материалов. Это молибден, цирконий, нитрид и карбонитрид. Изначально модель разрабатывалась для нанесения покрытия на зубные протезы из металла. Установка включает в себя откачивающий пост, форвакуумный инструмент и соответствующее электрооборудование.

Другие производители вакуумных установок

Компания Agilent Technologies является одной из самых больших по производству вакуумного оборудования. На предприятии налажен выпуск вакуумных насосов, течеискателей, вакуумметров, вакуумных масел и других составляющих систем.

Компания Air Dimensions Inc. специализируется на массовом выпуске высококачественных насосов диафрагменного типа, которые осуществляют отбор проб коррозийных газов, а так же сухих диафрагменных компрессоров.

Компания Edwards производит лабораторную и промышленную вакуумную технику. Среди них вакуумные насосы, вакуумметры и другое вспомогательное оборудования. Славится выпуском широкого ассортимента насосов разного типа.

Установки вакуумного напыления

При помощи установки вакуумного напыления (УВН) производится покрытие различных деталей покрытиями, которые выполняют проводящие, изолирующие, износостойки, барьерные и другие функции. Данный метод является самым распространенным среди других процессов микроэлетроники, в котором применяема металлизация. Благодаря таким установкам возможно получение просветляющих, фильтрующих и отражающих покрытий.

В качестве материалов покрытия может использоваться алюминий, вольфрам, титан, железо, никель, хром и т.д. При необходимости в среду может добавляться ацетилен, азот и кислород. Активация химической реакции при нагреве, ионизации и диссоциации газа. После проведения процедуры покрытия, дополнительная обработка не требуется.

Установка УВН-71 П-3 способна производить отработку технологического напыления. Она задействована в серийном производстве различных пленочных схем. При ее помощи производится изготовление тонких пленок в условиях высокого вакуума. Применяемый метод – резистивное испарение металлов.

Вакуумная установка УВ-24 производит лабораторные испытания асфальтобетона. Помогает определить его качество. Отличительная особенность данного агрегата – наличие двух откачиваемых баков, которые соединены между собой.

Магнетронное напыление

При магнетронном напылении нанесение тонкой пленки происходит посредствам катодного распыления. Устройство, использующие данный метод, называются магнетронные распылители. Данная установка может производить напыление многих металлов и сплавов. При ее использовании в различных рабочих средах с кислородом, азотом, диоксидом углерода и т.п. получаются пленки с различным составом.

Ионное напыление

Принцип работы ионной установки в вакууме – бомбардировка твердых тел ионами. При помещении подложки в вакуум, происходит попадание атомов на нее и образуется пленка.

Другие способы напыления

Вакуумное напыление может производиться с помощью оборудования периодического и непрерывного действия. Установки с периодическим действием применяются при определенном количестве обрабатываемых изделий. В массовом или серийном производстве используются установки непрерывного действия. Существуют одно-,и многокамерные виды напылительного оборудования. В многокамерных установках напылительные модули расположены последовательно. Во всех камерах производится напыление определенного материала. Между модулями находятся шлюзовые камеры и транспортирующее конвейерное устройство. Они осуществляют операции по созданию вакуума, испарения материала пленки, транспортировку по отдельности.

Вакуумные агрегаты

Вакуумный водокольцевой насосный агрегат типа ВВН 12 производит отсасывание воздуха, неагрессивных газов и других смесей, которые не очищаются от влаги и пыли. Поступающий в установку газ не требует очистки.

Агрегат вакуумный золотниковый АВЗ 180 универсален, имеет хороший показатель предельного остаточного давления, небольшой вес и отличается быстродействием и компактностью.

Технические характеристики агрегата вакуумного золотникового АВЗ 180.

Вакуумный агрегат АВР 50 способен откачивать из вакуумных пространств воздух, неагрессивные газы, пары и парогазовые смеси. Он не предназначен для перекачивания вышеперечисленных составов из одной емкости в другую. В его состав входят два насоса: НВД-200 и 2НВР-5ДМ.

Здравствуйте, друзья.


Итак, история началась немного ранее, когда у нас появилась вакуумная камера. Путь её к нам был неблизок и может быть описан отдельным рассказом, но это, как говорится, «совсем другая история». Скажу только, что ещё раньше она приносила людям какую-то пользу в одной из лабораторий Гёттингенского университета.

Первое, на чём мы начали эксплуатировать вакуумную камеру, стало испробывание способа термического осаждения металлов на подложки. Способ прост и стар, как мир. В молибденовый тигель помещается мишень распыляемого металла, например, серебра. Вокруг него размещён нагревательный элемент. Мы использовали проволоку из вольфрамрениевого сплава, которую наматывали в виде спирали.

Полностью устройство для термического напыления выглядит следующим образом:

Оснастка для термического напыления металлов. а. В сборе (защитный экран и задвижка сняты). Обозначения: 1 – тигель, 2 – нагревательный элемент, 3 – паропровод, 4 – токоподвод, 5 – термопара, 6 – рамка для образца.

После пропускания тока (в вакуумную камеру идёт через гермовводы) спираль раскаляется, нагревает лодочку, в которой также нагревается материал мишени и испаряется. Облако металлического пара поднимается по паропроводу и окутывает тело, на которое необходимо осадить металлическую плёнку.

Сам по себе способ простой и хороший, однако есть и минусы: большое энергопотребление, трудно располагать в облаке пара поверхности (тела), на которые нужно осаждать плёнку. Адгезия тоже не самая лучшая. Наносили на разные материалы, в том числе на металлы, стекло, пластик и др. В основном - для исследовательских целей, поскольку мы только осваивали вакуумное оборудование.

Теперь настал черёд рассказать про вакуумную систему. Эксперименты мы проводили в вакуумной камере, оснащенной вакуумной системой, состоящей из роторного форвакуумного и турбомолекулярного насоса и обеспечивающей остаточное давление 9,5 10 -6 – 1,2 10 -5 мм.рт.ст.
Если на первый взгляд кажется, что она не сложная, то на самом деле это не так. Во-первых, сама камера должна иметь герметичность, необходимую для поддержания высокого вакуума. Это достигается применением герметизации всех функциональных фланцев и отверстий. Верхний и нижний фланцы-крышки имеют такие же, по-принципу, резиновые уплотнения, как и самые малые отверстия, предназначенные для установки окон, датчиков, устройств, гермовводов и др. фланцевых крышек, только диаметром гораздо большим. Например, для надежной герметизации такого отверстия


Требуется фланец, прокладка и крепеж, как на этой фотографии.


Вот этим датчиком производится измерение вакуума в камере, сигнал с него поступает на прибор, который показывает уровень высокого вакуума.

Вакуум необходимого уровня (например 10-5 мм.рт.ст.), достигается следующим образом. Вначале форвакуумным насосом откачивается низкий вакуум до уровня 10-2. По достижении этого уровня включается высоковакуумный насос (турбомолекулярный), ротор которого может вращаться со скоростью 40 000 об/мин. При этом форвакуумный насос продолжает работать - он откачивает давление из самого турбомолекулярного насоса. Последний является довольно капризным агрегатом и его «тонкое» устройство и сыграло определенную роль в этом повествовании. Мы используем японский турбомолекулярный насос фирмы Osaka vacuum.

Откачиваемый из камеры воздух с парами масла рекомендуется сбрасывать в атмосферу, поскольку мелкодисперсные капельки масла могут «забрызгать» все помещение.

Разобравшись с вакуумной системой и отработав термическое напыление мы решили опробовать другой способ нанесения пленок - магнетронный. У нас был длительный опыт общения с одной крупной лабораторией, которая нам наносила функциональные нанопокрытия для некоторых наших разработок как раз способом магнетронного напыления. Кроме того у нас имеются довольно тесные связи с некоторыми кафедрами МИФИ, МВТУ и других вузов, которые также помогали нам освоить эту технологию.

Но со временем мы захотели использовать побольше возможностей, которые предоставляет вакуумная камера.

В скором времени у нас появился небольшой магнетрон, который мы и решили приспособить для нанесения пленок.

Именно магнетронный вакуумный метод напыления тонких металлических и керамических пленок считается одним из самых производительных, экономичных и простых в эксплуатации среди всех физических методов напыления: термического испарения, магнетронного, ионного, лазерного, электронно-лучевого. Магнетрон устанавливается в один из фланцев, как удобно для использования. Однако для напыления этого еще недостаточно, поскольку он требует подведения определенного напряжения, охлаждающей воды, а также газов для обеспечения поджига плазмы.

Теоретический экскурс

Упрощённо, магнетрон устроен следующим образом. На основании, которое одновременно служит магнитопроводом, помещены сильные магниты, которые образуют сильное магнитное поле. С другой стороны магниты закрываются металлической пластиной, которая служит источником распыляемого материала и называется мишенью. На магнетрон подается потенциал, а на корпус вакуумной камеры - земля. Разница потенциалов, образуемая между магнетроном и корпусом камеры в условиях разряженной атмосферы и магнитного поля приводит к следующему. Атом плазмообразующего газа аргона попадает в действие силовых линий магнитного и электрического поля и ионизируется под их действием. Выбившийся электрон притягивается к корпусу камеры. Положительный ион притягивается к мишени магнетрона и, разогнавшись под действием силовых линий магнитного поля, ударяется о мишень, выбивая из нее частицу. Та вылетает под углом обратным тому углу, под которым в мишень попал ион атома аргона. Частица металла летит от мишени в сторону расположенной напротив нее подложки, которая может быть сделана из любого материала.

Наши вузовские друзья изготовили для этого магнетрона DC источник питания на мощность порядка 500 Вт.

Также мы соорудили систему газонапуска для плазмообразующего газа аргона.

Для размещения предметов, на которые будут напыляться плёнки, мы соорудили следующее приспособление. В крышке камеры имеются технологические отверстия, в которые можно устанавливать разные приспособления: гермовводы электроэнергии, гермовводы движения, прозрачные окошки, датчики и прочее. В одно из этих отверстий мы установили гермоввод вращающегося вала. Снаружи камеры на этот вал мы подвели вращение от небольшого электромоторчика. Установив скорость вращения барабана порядка 2-5 герц мы добились хорошей равномерности нанесения плёнок по окружности барабана.

Снизу, т.е. внутри камеры, мы укрепили на вал лёгкую металлическую корзину, на которую можно навешивать предметы. В канцелярском магазине такой стандартный барабан продаётся как корзина для мусора и стоит порядка 100 рублей.

Теперь у нас было в наличии практически всё необходимое для напыления плёнок. В качестве мишеней мы использовали следующие металлы: медь, титан, нержавейку, алюминий, сплав медь-хром.

И начали пылить. Через прозрачные окна в камеру можно было наблюдать свечение плазмы на поверхности мишени магнетрона. Так мы контролировали «на глазок» момент поджига плазмы и интенсивность напыления.

Способ контроля толщины напыления придумали достаточно простой. Размещали на барабане один и тот же кусочек фольги с замеренной площадью поверхности и измеряли его массу до и после сеанса напыления. Зная плотность напыляемого металла легко вычисляли толщину наносимого покрытия. Регулировали толщину покрытия либо изменением времени напыления, либо регулируя напряжение на источнике питания магнетрона. На этом фото видны прецизионные весы, позволяющие замерять массу образцов с точностью до десятитысячных долей грамма.

Наносили мы на различные материалы: дерево, металлы, фольга, пластики, бумага, полиэтиленовые плёнки, ткани, короче на всё, что можно было разместить в камере и прикрепить к барабану. В основном мы ориентировались на получение эффектов декоративного характера – изменение цвета или тактильного восприятия поверхности. На этих образцах органического и неорганического происхождения можно увидеть разницу в цвете до и после нанесения различных металлических плёнок.

Ещё более рельефно разница в цвете до и после напыления видна на тканях и плёнках. Здесь правый кусочек обычной полиэтиленовой плёнки – не напыленный, а левая покрыта слоем меди.

Ещё один эффект, который может быть использован для различных нужд – это проводимость тонких плёнок на подложках. На этом фото показано сопротивление кусочка бумаги (в омах), на который нанесена плёнка из титана толщиной чуть больше микрона.

Для дальнейшего развития мы выбрали несколько направлений. Один из них – улучшать эффективность напыления плёнок магнетронами. Собираемся «замахнуться» на собственную разработку и изготовление более мощного магнетрона высотой с камеру и мощностью в 2 раза больше, чем показанный в этом очерке. Также мы хотим опробовать технологию реактивного напыления, когда вместе с плазмообразующим газом аргоном в камеру подаются, например, кислород или азот и в ходе напыления плёнок на поверхности подложки образуются не чисто металлические плёнки, а оксиды или нитриды, которые имеют другой спектр свойств, нежели чистые металлические плёнки.

Модификация различных конструкций, деталей и функциональных элементов зачастую выполняется путем полного изменения структуры материалов. Для этого задействуются средства глубокой термической, плазменной и химической обработки. Но существует и широкий сегмент методов изменения эксплуатационных свойств за счет внешних покрытий. К таким способам относится вакуумная металлизация, благодаря которой можно улучшать декоративные, токопроводящие, отражающие и другие характеристики материалов.

Общие сведения о технологии

Суть метода заключается в напылении частиц металла на рабочую поверхность. Процесс формирования нового покрытия происходит за счет испарения донорских металлов в условиях вакуума. Технологический цикл подразумевает выполнение нескольких стадий структурного изменения целевой основы и элементов покрытия. В частности, выделяются процессы испарения, конденсации, абсорбции и кристаллизации. Ключевой процедурой можно назвать взаимодействие металлических частиц с поверхностью в условиях особой газовой среды. На этом этапе технология вакуумной металлизации обеспечивает процессы диффузии и присоединения частиц к структуре обрабатываемой детали. На выходе в зависимости от режимов напыления, характеристик покрытия и типа заготовки можно получать самые разные эффекты. Современные технические средства позволяют не просто улучшать отдельные эксплуатационные качества изделия, но и с высокой точностью дифференцировать свойства поверхности на отдельных участках.

Применяемое оборудование

Различают три основные группы машин, используемых для данной технологии. Это оборудование непрерывного, полунепрерывного и периодического действия. Соответственно, они различаются по признаку общей организации обрабатывающего процесса. Агрегаты с непрерывным действием часто используют на серийных производствах, где требуется поточная вакуумная металлизация. Оборудование этого типа может быть одно- и многокамерным. В первом случае агрегаты ориентируются на выполнение непосредственно металлизации. Многокамерные же модели предусматривают и возможность реализации дополнительных процедур - первичной подготовки изделия, контроля, термической обработки и т.д. Такой подход позволяет оптимизировать процесс изготовления. Машины для периодической и полунепрерывной металлизации, как правило, имеют одну основную камеру. Именно в силу нерегулярности производства они используются для конкретной процедуры, а подготовительные операции и тот же контроль качества осуществляются в отдельном порядке - иногда в ручном режиме без автоматизированных линий. Теперь стоит подробнее рассмотреть, из каких узлов состоят такие агрегаты.

Устройство машин для металлизации

Помимо основной камеры, где и происходят процессы напыления, оборудование включает множество вспомогательных систем и функциональных компонентов. В первую очередь стоит выделить непосредственно источники распыляемого материала, коммуникации которых связываются с газораспределительным комплексом. Чтобы установка вакуумной металлизации могла обеспечивать нужные для конкретной задачи обработки параметры, подающие каналы напыления с регуляторами позволяют, в частности, настраивать температурный уровень, скорость направления потоков и объемы. В частности эта инфраструктура формируется натекателями, насосами, клапанами, фланцевыми элементами и прочей арматурой.

В современных установках для той же регуляции рабочих параметров используются датчики, подключенные к микропроцессорному блоку. Учитывая заданные требования и фиксируя текущие фактические значения, аппаратура без участия оператора может корректировать режимы обработки. Также для облегчения процессов эксплуатации оборудование дополняется внутрикамерными системами очистки и калибровки. Благодаря такой оснастке упрощается ремонт вакуумной металлизации машины, поскольку постоянная и своевременная чистка минимизирует риски перегрузок пневмодвигателей, манипуляторов и коммуникационных контуров. Последние и вовсе рассматриваются как расходная часть, замена которой в агрегатах непрерывного действия выполняется в регулярном порядке техобслуживания.

Целевые материалы для металлизации

Прежде всего процедуре подвергаются металлические заготовки, которые могут быть выполнены в том числе из специальных сплавов. Дополнительное покрытие требуется для обеспечения антикоррозийного слоя, повышения качества электрической проводки или же изменения декоративных свойств. В последние годы вакуумная металлизация все чаще используется и применительно к полимерным изделиям. Данный процесс имеет свою специфику, обусловленную характеристиками структуры объектов такого рода. Реже технология применяется в отношении изделий, которые имеют низкие показатели твердости. Это касается древесины и некоторых синтетических материалов.

Особенности металлизации пластиков

Напыление на поверхности пластиковых деталей также способно изменить его электрические, физические и химические свойства. Нередко металлизацию используют и как средство повышения оптических качеств подобных заготовок. Главной же проблемой при выполнении таких операций является процесс интенсивного термического испарения, который неизбежно оказывает давление на потоки частиц, напыляющих поверхность элемента. Поэтому требуются специальные режимы регуляции диффузии основного материала и расходуемой массы.

Имеет свою специфику и вакуумная металлизация пластмасс, отличающихся жесткой структурой. В данном случае будет иметь значение присутствие защитных и грунтующих лаков. Для поддержания достаточного уровня адгезии с преодолением барьеров этих пленок может потребоваться повышение энергии термического воздействия. Но здесь же вновь возникает проблема с рисками разрушения пластиковой структуры под влиянием тепловых потоков. В итоге для снятия излишнего напряжения в рабочей среде вводятся модифицирующие компоненты наподобие пластификаторов и растворителей, позволяющих удерживать форму заготовки в оптимальном состоянии независимо от температурного режима.

Особенности обработки пленочных материалов

Технологии изготовления упаковочных материалов предусматривают использование металлизации для ПЭТ-пленок. Данный процесс обеспечивает алюминирование поверхности, благодаря чему заготовка наделяется более высокой прочностью и стойкостью перед внешними воздействиями. В зависимости от параметров обработки и конечных требований к покрытию могут применяться разные способы теплоотвода. Поскольку пленка чувствительна к температуре, вводится дополнительная процедура осаждения. Как и в случае с пластиками, она позволяет регулировать термический баланс, сохраняя оптимальную для заготовки среду. Толщина пленок, которые обрабатываются по методу вакуумной рулонной металлизации, может составлять от 3 до 50 мкм. Постепенно внедряются и технологии, обеспечивающие подобные покрытия на поверхностях материалов толщиной 0,9 мкм, но по большей части это пока лишь экспериментальная практика.

Металлизация отражателей

Это тоже отдельное направление использования металлизации. Целевым объектом в данном случае выступают автомобильные фары. Их конструкция предусматривает наличие отражателей, которые со временем утрачивают свои эксплуатационные качества - тускнеют, ржавеют и, как следствие, становятся непригодными к использованию. Кроме того, даже новая фара может получить случайное повреждение, из-за чего потребуется ее ремонт и восстановление. Именно на эту задачу и ориентируется вакуумная металлизация отражателей, обеспечивающая износостойкое напыление на зеркальной поверхности. Заполнение внешней структуры металлизированными частицами с одной стороны ликвидирует мелкие дефекты, а с другой - выступает защитным покрытием, предотвращая возможные повреждения в будущем.

Организация процесса в домашних условиях

Без специального оборудования можно применить технологию поверхностного химического покрытия, но для вакуумной обработки в любом случае потребуется соответствующая камера. На первом этапе подготавливается сама заготовка - ее следует очистить, обезжирить и при необходимости выполнить шлифование. Далее объект помещается в камеру вакуумной металлизации. Своими руками можно выполнить и специальную оснастку на рельсах из профильных элементов. Это будет удобный способ загрузки и выгрузки материала, если планируется обработка в регулярном режиме. В качестве источника частиц металлизации применяются так называемые болванки - из алюминия, латуни, меди и др. После этого камера настраивается на оптимальный режим обработки и начинается процесс напыления. Готовое изделие сразу после металлизации можно покрыть вручную вспомогательными защитными покрытиями на основе лаков.

Положительные отзывы о технологии

Метод имеет множество положительных качеств, которые отмечают пользователи готовых изделий в разных областях. В частности указывается на высокие защитные свойства покрытия, которое предотвращает процессы коррозии и механического разрушения основы. Положительно отзываются и рядовые потребители продукции, которая подвергалась вакуумной металлизации с целью улучшения или изменения декоративных качеств. Специалисты же подчеркивают и экологическую безопасность технологии.

Негативные отзывы

К минусам данного метода обработки изделий относят сложность технической организации процесса и высокие требования к подготовительным мероприятиям заготовки. И это, не говоря о применении высокотехнологичного оборудования. Только с его помощью можно получить качественное напыление. Стоимость также входит в список недостатков вакуумной металлизации. Цена обработки одного элемента может составлять 5-10 тыс. руб. в зависимости от площади целевой области и толщины покрытия. Другое дело, что серийная металлизация удешевляет стоимость отдельного изделия.

В заключение

Изменение технико-физических и декоративных свойств тех или иных материалов расширяет возможности их дальнейшего применения. Развитие метода вакуумной металлизации обусловило появление специальных направлений обработки с ориентацией на конкретные эксплуатационные качества. Технологи также работают и над упрощением самого процесса напыления, что уже сегодня проявляется в виде уменьшения габаритов оборудования и сокращения процедур пост-обработки. Что касается применения методики в домашних условиях, то это наиболее проблемный способ покрытия, так как требует от исполнителя наличия специальных навыков, не говоря о технических средствах. С другой стороны, более доступные методы напыления не позволяют получать покрытия того же качества - будь то защитный слой или декоративная стилизация.

Обработка поверхностей методом вакуумного напыления металлами позволяет усилить положительные характеристики изделий из различных материалов. Металлические детали защищаются от коррозии, лучше проводят электричество, становятся более эстетичными внешне. Металлизация пластиковых изделий позволяет получить качественные и красивые детали из более легких и дешевых материалов. Это особенно актуально для автопромышленности, потому как металлизация пластиковых комплектующих позволяет значительно снизить вес автомобилей. А металлизированный мех придает шубе эксклюзивность, неповторимость и является новым трендом сезона.

В компании «Альфа-К» можно заказать вакуумное металлическое напыление для изделий из различных материалов, в том числе и меха.

Методы

Суть технологии заключается в том, что в условиях вакуума на специальном оборудовании переносятся мельчайшие металлочастицы на рабочую поверхность заготовки. В процессе формирования покрытий исходный металл испаряется, конденсируется, абсорбируется и кристаллизуется в газовой среде, создавая стойкое покрытие. В зависимости от типа заготовки, свойств металлической пленки и выбранного режима напыления получаются самые разнообразные эффекты. Напылить можно практически любой металл: алюминий, никель, хром, медь, бронза, золото, титан, пр. С учетом специфических свойств и особенностей, под каждый металл требуются различные режимы и технические приемы. Например, из-за низкой износостойкости особой технологии требует вакуумное напыление алюминия. Вот почему в нашей компании работают исключительно высококвалифицированные и опытные специалисты. Металлизация проводится разными способами.

Вакуумно-плазменное

В таких системах под неким давлением газа металлизированное покрытие создается путем сильного нагрева источника металла, вследствие чего происходит его испарение, и частицы оседают на заготовку. Камера может быть металлической, стеклянной, обязательно с системой водяного охлаждения. Для нагревания напыляемого элемента используют такие испарители:

  • проволочный либо ленточный вольфрамовый или молибденовый испаритель прямого накала;
  • электронно-радиальный, создающий нагрев с помощью электрической бомбардировки.

В соответствии с исходным металлом или сплавом, который необходимо напылить на деталь, выставляется температура нагрева в теплообменнике, она может достигать 20 тыс. °С. Если у напыляемого металла не очень хорошая адгезия с материалом заготовки, сначала наносится первичный слой из металла с более высокими адгезионными свойствами.

Ионно-вакуумное

Главным преимуществом данного метода считается отсутствие необходимости очень сильно нагревать испаритель. Металл распыляется под воздействием бомбардировки отрицательно заряженными ионами газа. Создание такой среды возможно благодаря особым разрядам внутри рабочей камеры. Для этого в оборудовании используется магнитная система с охлаждением. Тлеющий разряд для распыления напыляемого элемента создается между 2 электродами благодаря подаче высоковольтного напряжения до 4 кВ. В рабочей камере создается газовая среда с давлением до 0,6 Паскаль. По схожему принципу производится также вакуумное ионно-плазменное напыление на специализированном оборудовании.

Поверхности, пригодные для напыления

Любые предметы, способные выдерживать нагрев до 80 °С и воздействие специализированных лаков. Достоинством технологии является то, что для придания изделиям эффекта медных покрытий, зеркального хромирования, золочения, никелирования не нужно предварительно полировать поверхности. Чаще путем вакуумной металлизации покрывают детали из пластика, стекла, металлических сплавов, различные полимерные и керамические изделия. Реже, но все же технология используется для более мягких материалов, таких как древесина, текстиль, мех.

Обработка металлических заготовок и изделий из металлосплавов благодаря хорошей совместимости основания и покрытий не требует использования дополнительных расходных материалов. В то время как полимеры необходимо грунтовать предварительно защитными и адгезионными составами. Для предотвращения деформации полимерных заготовок и снижения напряжения в рабочей среде во время вакуумной металлизации используют специальные модифицирующие компоненты и режимы диффузии материала.

Этапы металлизации

Технологический процесс вакуумного напыления металла на различные изделия включает несколько последовательных этапов:

  • Подготовка детали. Важно, чтобы заготовка имела максимально простую форму, без труднодоступных для оседания конденсата мест.
  • Нанесение защиты. На полимерные основы, содержащие низкомолекулярные наполнители, необходимо нанести антидиффузионное покрытие.
  • Сушка. В течение 3 часов детали сушатся при 80 градусах по Цельсию, что позволяет удалить впитавшуюся влагу.
  • Обезжиривание. В вакуумной камере с помощью тлеющего разряда заготовка обезжиривается. Это особенно хорошо влияет на структуру полимеров.
  • Активационная обработка. Способ обработки выбирается в зависимости от материала изделия, необходимо это для повышения адгезии поверхности перед металлизацией.
  • Напыление металла. Путем конденсации создается металлизированный слой на заготовке.
  • Контроль качества покрытия. Декоративные детали осматриваются на предмет равномерности напыления и его прочности. Технические изделия испытываются дополнительно с помощью липкой ленты, ультразвуковых колебаний, трения и т.д.


Установки металлизации - довольно сложное и дорогое оборудование, потребляющее много электричества. Для создания комплексного технологического цикла требуется довольно просторное помещение, так как разместить следует несколько разнофункциональных устройств. Основные узлы вакуумной системы:

  • Блок энергообеспечения и управления в совокупности с источником конденсируемых металлов.
  • Газораспределительная система, создающая вакуумное пространство и регулирующая потоки газов.
  • Рабочая камера для проведения вакуумной металлизации.
  • Блок термического контроля, управления толщиной и скоростью напыления, свойствами покрытий.
  • Транспортирующий блок, отвечающий за изменение положения заготовок, их подачу и изъятие из камеры.
  • Устройства блокировки узлов, газовые фильтры, заслонки и прочее вспомогательное оборудование.

Магнетронное и ионно-плазменное вакуумное оборудование бывает разных габаритов, от небольших, с камерами в несколько литров до весьма крупных, с объемом камер в несколько кубических метров.

Компания «Альфа-К» располагает достаточными производственными мощностями и соответствующим оборудованием для обеспечения различных способов вакуумного напыления. У нас можно заказать ионно-плазменное покрытие изделий из любых материалов такими металлами, как титан, медь, алюминий, латунь, хром, различные сплавы и пр. Гарантируем высокое качество работы и лояльные цены.

Навигация:

Различают последующие периоды вакуум напылений:

  • Создание газов (паров) с элементов, образующих покрытие;
  • Транспортировка паров к подложке;
  • Конденсация пара в подложке и развитие напыления;
  • К группе способов вакуумного напыления принадлежат приведенные ниже технологические процессы, а кроме того реактивные виды данных действий.

Методы теплового напыления:

  • Испарение электрическим лучом;
  • Испарение лазерным лучом.

Испарение вакуумной дугой:

  • Сырье улетучивается в катодном пятне гальванической дуги;
  • Эпитаксия моляльным лучом.

Ионное рассеивание:

  • Первоначальное сырье распыляется бомбардировкой гетерополярным потоком и действует на подложку.

Магнетронное распыление:

  • Напыление с гетерополярным ассистированием;
  • Имплантация ионов;
  • Фокусируемый ионный пучок.

Вакуумное напыление

Применение

Вакуумное покрытие используют с целью формирования в плоскости элементов, приборов и оснащения многофункциональных покрытий - проводящих, изолирующих, абразивостойких, коррозионно-устойчивых, эрозионностойких, антифрикционных, антизадирных, барьерных и т. д. Процедура применяется с целью нанесения декоративных покрытий, к примеру, при изготовлении часов с позолотой и оправ для очков. Единственный из ключевых действий микроэлектроники, где используется с целью нанесения проводящих оболочек (металлизации). Вакуумное покрытие применяется с целью получения оптических покрытий: просветляющих, отображающих, фильтрующих.

Материалами для напыления предназначаются мишени с разных веществ, металлов (титана, алюминия, вольфрама, молибдена, железа, никеля, меди, графита, хрома), их сплавов и синтезов (Si02,Ti02,Al203). В научно-техническую сферу способен быть добавлен электрохимически динамичный метан, к примеру, ацетилен (с целью покрытий, включающих углерод), азот, воздух. Хим реакция в плоскости подложки активизируется нагревом, или ионизацией и диссоциацией газа той либо другой конфигурацией газового ряда.

С поддержкой способов вакуумного напыления обретают напыления толщиной с нескольких ангстрем вплоть до нескольких микрон, как правило в последствии нанесения напыления плоскость не требует добавочного обрабатывания.

Методы вакуумного напыления

Вакуумное покрытие — перенесение элементов напыляемого материала с источника (зоны его переведения в газовую фазу) к плоскости детали исполняется согласно прямолинейным траекториям при вакууме 10-3 Па и ниже (вакуумное улетучивание) и посредством дифузного и конвекционного перенесения в плазме при давлениях 1 Па (катодное рассеивание) и 10-1-10-3 Па (магнетронное и ионно-плазменное рассеивание). Участь любой из крупиц напыляемого элемента при соударении с поверхностью детали находится в зависимости от ее энергии, температуры плоскости и хим сродства веществ оболочки и составляющих. Атомы либо молекулы, достигнувшие плоскости, имеют все шансы или отразиться от нее, или адсорбироваться и спустя определенный период времени, покинуть ее (десорбция), или адсорбироваться и формировать в плоскости поликонденсат (уплотнение). При высочайших энергиях крупиц, высокой температуре плоскости и небольшом хим сродстве, часть отображается поверхностью. Температура плоскости детали, больше которой все частички отражаются с нее и оболочка не сформируется, именуется опасной температурой напыления вакуумного, её роль находится в зависимости от природы веществ оболочки и плоскости детали и от состояния плоскости. При весьма небольших струях испаримых частиц, в том числе и в случае если данные частички в плоскости адсорбируются, однако нечасто сталкиваются с иными подобными же частичками, они десорбируются и не могут формировать зачатков, т.е. оболочка никак не увеличивается. Опасной частотой струи испаримых элементов для переданной температуры плоскости именуется минимальная уплотненность, при которой частички конденсируются и образовывают пленку.

Метод вакуумного напыления

Вакуумно-плазменное напыление

Согласно данному способу тонкие оболочки толщиной 0,02-0,11 мкм выходят в следствии нагрева, улетучивания и осаждения элемента на подложку в изолированной камере при сокращенном давлении газа в ней. В камере с поддержкой вакуумного насоса формируется максимальное влияние остаточных газов примерно 1,2х10-3 Па.

Рабочая камера предполагает собою металлический либо стеклянный колпак с концепцией внешнего водяного остужения. Камера размещена в основной плите и формирует с ней вакуумно-непроницаемое объединение. Адгерент, в котором проводится напыление, зафиксирован на держателе. К подложке прилегает электронагреватель, раскаляющий подложку вплоть до 2500-4500 оС, с целью усовершенствования адгезии напыляемой оболочки. Теплообменник содержит в себе отопитель и ресурс напыляемого элемента. Переломная затворка закрывает течение паров с испарителя к подложке. Покрытие длится в ходе времени, когда заслонка не закрыта.

Для нагрева напыляемого элемента в основном применяется 2 вида испарителей:

  • Прямонакальный проволочный или ленточный испаритель, изготавляемый с вольфрама либо молибдена;
  • Электронно-радиальные испарители с нагревом испаримого элемента электрической бомбардировкой.

Для напыления пленок с многокомпонентых веществ используется подрывное улетучивание. При данном теплообменник разогревается вплоть до 20000 оС и посыпается порошком из смеси испаримых веществ. Подобным способом удаётся обретать композиционные покрытия.

Некоторые известные вещества с целью покрытий (к примеру, золото) обладают плохой адгезией с кремнием и иными полупроводниковыми веществами. В случае некачественной адгезии испаримого вещества к подложке, улетучивание прокладывают в 2 слоя. Вначале сверху подложки наносят слой сплава, обладающего отличной адгезией к полупроводниковой подложке, к примеру, Ni, Cr либо Ti. Далее напыляют главный пласт, у которого прилипание с подслоем ранее превосходное.

Вакуумно-плазменное напыление

Ионно-вакуумное напыление

Данный способ состоит в разбрызгивании вещества наносимого элемента, пребывающего под отрицательным потенциалом, вследствие бомбардировки ионами пассивного газа, появляющихся в ходе возбужденности перетлевающего разряда изнутри конструкции вакуумного напыления.

Материал негативно заряженного электрода распыляется перед воздействием ударяющихся о него ионизованных атомов пассивного газа. Данные пульверизированные промежуточные атомы и осаждаются сверху подложки. Основным превосходством ионно-вакуумного способа напыления представляется отсутствие потребности нагрева испарителя вплоть до высочайшей температуры.

Механизм происхождения тлеющего разряда. Разлагающийся разряд прослеживается в камерах с невысоким давлением газа меж 2-я железными электродами, на которые подается большой вольтаж вплоть до 1-4 кВ. При данном отрицательный электрод как правило заземлен. Катодом представляется мишень с распыляемого вещества. С камеры заранее откачивается воздушное пространство, далее запускается газ вплоть до давления 0,6 Па.

Тлеющий разряд приобрел собственное наименование из-за присутствия в мишени (катоде) так именуемого перетлевающего свечения. Данное сверкание обуславливается огромным падением возможности в тесном пласте объёмного заряда возле катода. К области TC прилегает сфера фарадеева тёмного пространства, переходящая в позитивный столбик, что представляется самостоятельной долею разряда, никак не подходящей с других слоев разряда.

Вблизи анода, кроме того, существует легкий пласт объёмного заряда, именуемый анодным пластом. Прочая часть межэлектродного интервала захвачена квазинейтральной плазмой. Таким способом, в камере прослеживается растровое сверкание с чередующихся тёмных и ясных полос.

Для прохождения тока меж электродами нужна стабильная эмиссия электронов катода. Данную эмиссию допускается спровоцировать по принуждению посредством нагрева катода, либо облучения его ультрафиолетовым светом. Такого рода разряд представляется несамостоятельным.

Ионно-плазменное напыление

Вакуумное напыление алюминия

В некоторых случаях, особенно при напылении пластика, применяется металлизирование алюминием, а этот металл — материал довольно легкий и никак не износоустойчивый, в данном случае необходимы некоторые особые научно-технические приемы. Пользователю следует понимать, что подобные составляющие правильнее всего оберегать от засорения сразу же по прошествии штамповки, а кроме того, вредно использовать разные смазывающие порошки и присыпки в пресс-фигурах.

Вакуумное напыление алюминия

Вакуумное напыление металлов

Металлы, испаряющиеся при температуре ниже места их плавления, допускается разогревать непосредственным прохождением тока, серебро и золото испаряют в челноках с тантала либо вольфрама. Покрытие обязано изготавливаться в камере с давлением < 10-4 мм рт.ст.

Вакуумное напыление металлов

Для происхождения независимого перетлевающего разряда следует спровоцировать эмиссию электронов с катода посредством подачи высочайшего напряжения размером 2-4 кВт меж электродами. В случае если вложенный вольтаж превосходит возможности ионизации газа в камере (как правило Ar), в таком случае, в результате конфликтов электронов с молекулами Ar, метан ионизируется с образованием положительно заряженных ионов Ar+. В следствии, в зоне катодного черного пространства появляется ограниченный пространственный разряд и поэтому, мощное гальваническое поле.

Ионы Ar+, приобретающие энергию в данной области, выбивают атомы вещества катода, в то же время инициируя эмиссию второстепенных электронов с катода. Данная эмиссия и удерживает независимый тлеющий разряд. Промежуточные атомы с вещества катода доходят подложки и осаждаются на ее плоскости.

Вакуумное ионно-плазменное напыление

Установка вакуумного напыления УВН

Конструкция оснащена важным комплексом прогрессивных устройств и приборов, которые обеспечивают оседание покрытий металлов их синтезов и PC сплавов с установленными свойствами, превосходной адгезией и высочайшей равномерностью по части площади.

Комплекс приборов и устройств, которые входят в структуру агрегата:

  • полуавтоматический (механический) блок управления вакуумной системой;
  • магнетронная распылительная концепция в стабильном токе (с 1 вплоть до 4 магнетронов);
  • концепция нагревания (с контролированием и поддержанием установленной температуры);
  • концепция очищения напыляемых продуктов в зоне тлеющего разряда;
  • концепция передвижения продуктов в вакуумной среде (простая либо планетарная карусель);
  • числовой вакуумметр;
  • концепция контролирования противодействия возрастающих пленок;
  • инверторный блок питания магнетронов (мощность вплоть до 9 кВт).

Установка вакуумного напыления