Лев певзнер - триз для «чайников». приемы устранения технических противоречий

ТРИЗ учит решать изобретательские задачи. Известные - с помощью Информационного фонда , неизвестные - с помощью АРИЗ. Алгоритм решения изобретательских задач (АРИЗ) является, пожалуй, самым популярным и действенным элементом (и инструментом) теории Альтшуллера. Алгоритмы представляют собой подробное и достаточно трудоемкое описание последовательности изобретательского процесса, которое может взять на вооружение каждый человек, чья деятельность связана с творчеством. Но при этом стоит отметить, что важно не только знание, но и понимание алгоритмов, а также практика работы с ними. Автор методики писал: «АРИЗ - инструмент для мышления, а не вместо мышления».

Поскольку АРИЗ занимает важное место в теории изобретательских задач, в этом уроке мы попробуем дать ответ на вопрос: какие алгоритмы ТРИЗ используются для поиска наиболее подходящих решений и как с ними эффективно работать?

Что такое АРИЗ?

Алгоритмом Г. С. Альтшуллер назвал свою методику в широком, а не узком, математическом смысле. Алгоритм решения изобретательских задач не требовал жесткой точности, как, например, алгоритм извлечения квадратного корня из целого положительного числа. Он отличался гибкостью: разные задачи могли решаться разными путями, зависящими не только от условий задачи, но и от знаний, опыта и способностей самого изобретателя.

АРИЗ - это комплексная программа алгоритмического типа, основанная на законах развития технических систем и предназначенная для анализа и решения изобретательских задач.

Это своеобразная пошаговая инструкция, в которой можно выделить 3 части (по книге В. Петрова «Алгоритм решения изобретательских задач»):

  1. Программа АРИЗ - последовательность операций по выявлению и разрешению противоречий, анализу исходной ситуации и выбору задачи для решения, синтезу решения, анализу полученных решений и выбору наилучшего из них, накоплению наилучших решений и обобщению этих материалов для улучшения способа решения других задач. Структура программы и правила ее выполнения базируются на законах и закономерностях развития техники.
  2. Информационное обеспечение , включает в себя систему стандартов на решение изобретательских задач; технологические эффекты (физические, химические, биологические, математические, в частности, наиболее разработанных из них в настоящее время - геометрические); приемы устранения противоречий; способы применения ресурсов природы и техники.
  3. Методы управления психологическими факторами, ведь программа АРИЗ предназначена для использования человеком. Помимо преодоления психологической инерции, технология позволяет развивать творческое воображение необходимое для решения сложных изобретательских задач.

Основные понятия АРИЗ

Категориальный аппарат АРИЗ достаточно прост и базируется на двух основных понятиях: противоречиях и идеальном конечном результате. Рассмотрим их детально и проиллюстрируем примерами.

Противоречия. Противоречие - взаимодействие противоположных, взаимоисключающих сторон и тенденций, предметов и явлений, которые вместе с тем находятся во внутреннем единстве. В случае с ТРИЗ и АРИЗ решение проблемы строится на последовательности по выявлению и разрешению противоречий, устранению их причин. АРИЗ апеллирует к трем видам противоречий, благодаря которым выявляются причинно-следственные связи. Их определение необходимо для понимания сути решения задачи, поэтому рассмотрим их детальнее.

Поверхностное противоречие (ПП) - противоречие между потребностью и возможностью ее удовлетворения. Классическая теория Г. С. Альтшуллера называет это противоречие административным (АП), поскольку оно часто формулируется администрацией или заказчиком и содержит отсылку к проблеме: «Надо увеличить скорость работы, но неизвестно как» или «Имеется брак в производстве, его нужно устранить, но неясно как это сделать» и т.д. Поверхностное противоречие (ПП) сопряжено либо с устранением нежелательного эффекта (НЭ) - того, что нас не устраивает в технической системе, либо с необходимостью создания чего-то нового, но еще непонятно как. Пример: снимая горячую кастрюлю с плиты, можно обжечься. Как устранить этот недостаток?

Углубленное противоречие (УП) - это противоречие между определенными частями, качествами или параметрами системы. УП возникает при улучшении одних частей (качеств или параметров) системы с учетом недопустимости ухудшения других, когда полезное действие, вызывает одновременно и вредное. Обычно приходится искать компромисс, то есть чем-то жертвовать ради решения (скоростью работы, габаритами и т. д.). Таким образом, углубленное противоречие представляет собой причину возникновения поверхностного противоречия, усиливая его. Г. С. Альтшуллер, указывая, что для решения задачи нужно изменить технические характеристики объекта, называл это противоречие техническим (ТП). Пример: кастрюля должна нагреваться, ведь только так возможно приготовление еды. Это вступает в противоречие с потребностью снимать кастрюлю руками.

Обостренное противоречие (ОП) - предъявление диаметрально противоположных свойств (например, физических) к определенной части технической системы. Оно необходимо для определения причин, породивших углубленное противоречие, другими словами, является дальнейшим его углублением. Порой это нужно для выявления первопричины. Для многих незнакомых с АРИЗ такая формулировка звучит непривычно, ведь ОП подразумевает, что часть ТС должна находиться сразу в двух взаимоисключающих состояниях: быть холодной и горячей, подвижной и неподвижной и т.д. Изучение причин, породивших углубленное (техническое) противоречие приводит к необходимости выявления противоречивых физических свойств системы, поэтому Г. С. Альтшуллер назвал его физическим противоречием (ФП). Пример: кастрюля должна быть горячей, чтобы готовить в ней еду, и холодной, чтобы снимать ее руками. Но достаточно, чтоб горячим было только дно и стенки. А вот ручки можно сделать из теплоизоляционного материала. Так мы приходим к решению.

Идеальный конечный результат (ИКР) - решение, которое мы хотели бы видеть в своих самых смелых мечтах, когда возможно абсолютно все. ИКР - идеальная система, КПД которой равен 100%. Альтшуллер предположил, что самое эффективное решение проблемы - такое, которое достигается «само по себе», только за счет уже имеющихся ресурсов. Он определял идеальный конечный результат (ИКР) как ситуацию когда: «Некий элемент (X-элемент) системы или окружающей среды сам устраняет вредное воздействие, сохраняя способность выполнять полезное».

  • Идеальная техническая система - это система, которой нет, а ее функции выполняются, другими словами, цели достигаются без средств. Мы приводили пример такой ТС, описывая закон увеличения степени идеальности системы.
  • Идеальное вещество - вещества нет, а функции его (прочность, непроницаемость и т.д.) остаются. Этим объясняется современная тенденция использовать все более легкие и более прочные материалы.
  • Идеальная форма - обеспечивает максимум полезного эффекта, например, прочность при минимуме используемого материала.
  • Идеальный процесс - получение результатов без процесса, то есть мгновенно. Сокращение процесса изготовления изделий - цель любой прогрессивной технологии.

Таким образом, суть АРИЗ заключается в том, чтобы на основе сопоставления идеального и реального состояния ТС выявить противоречие и устранить его. Именно для этого важно, чтобы у изобретателя было развито ассоциативное мышление, которое можно тренировать в том числе и при помощи нашей игры "Цепочки ассоциаций".

Цепочки ассоциаций

Эта игра направлена на развитие ассоциативного мышления.

Сначала вам будет предложено закончить десять цепочек из 3 слов своей ассоциацией. Постарайтесь придумать такую ассоциацию, которая очень хорошо связана именно с предложенными словами, но никакими другими.

После заполнения цепочек вам нужно найти лишние элементы в построенных ранее цепочках. Нажмите «Старт» для начала игры.

Составляющие АРИЗ

Алгоритм решения изобретательских задач состоит из нескольких элементов. Здесь дан упрощенный вариант АРИЗ.

Этап 1. ТИП ЗАДАЧИ

Вначале нужно определить к какому типу задач относится наша: она исследовательская или изобретательская? Исследовательская задача требует описания нового явления, неизвестного ранее и непонятного. Изобретательская же имеет дело с известным нам явлением, которое нужно изменить или устранить. Очевидно, что такие задачи решаются проще, поэтому нужно уметь переводить исследовательскую задачу в изобретательскую. Чтобы сделать это, нужно к условию задачи поставить вместо вопроса «почему (как) это происходит?» вопрос: «как это делать?» Для этого записать формулировку обращенной задачи по схеме: «Система (указать назначение) включает (перечислить входящие в систему элементы). Необходимо при заданных условиях (указать) обеспечить получение (указать наблюдаемое явление)».

Этап 2. ПРОТИВОРЕЧИЯ И ИКР

На данном этапе нужно сформулировать противоречия и идеальный конечный результат. Бывают случаи, когда четкое определение этих двух составляющих уже наталкивает на приемлемый результат. Например, задача: как поступить гостинице, чтоб гости не крали вещи? Противоречие - кражу допустить нельзя, но и следить за вещами и проверять багаж съезжающих невозможно. ИКР - даже в случае кражи гостиница не должна нести убытков. Решается все просто - стоимость вещей в номере изначально включается в стоимость проживания.

Этап 3. РЕСУРСЫ

Ресурсами может быть все, что полезно для нахождения решения. Желательно, чтобы для этого использовались те ресурсы, которые уже присутствуют в проблемной ситуации, а также максимально дешевые ресурсы. Например, если грузовик буквально на сантиметр выше моста или дорожного перекрытия, разумнее спустить немного колеса и проехать, а не искать объездной путь.

Благодаря работе в направлении поиска полезных ресурсов созданы специальные справочники для ТРИЗ.

Этап 4. РЕШЕНИЕ

Применить приемы и принципы, созданные для поиска решений в ТРИЗ:

  • 40 приемов устранения технических противоречий, сформулированные Г. С. Альтшуллером. Подробнее о них читайте в уроке, посвященном Информационному фонду ТРИЗ .
  • Операторы РВС (Р - размер, В - время, С - стоимость). Суть метода в том, что при применении оператора РВС снижается психологическая инерция мышления. Достигается это благодаря мысленному изменению параметров объекта, что позволяет взглянуть на него под другим углом.

Этап 5. АНАЛИЗ

Получив один или несколько вариантов решения задачи, нужно проанализировать их с позиции идеальности. Для этого нужно выяснить насколько сложно и дорого обойдется его реализация, задействованы ли все ресурсы системы, какие нежелательные эффекты возникли, как их минимизировать или устранить.

Схематичное представление АРИЗ

АРИЗ требует точной формулировки задачи, когда выявлены ПП, УП, ИКР, ОП согласно изображенной цепочке.

ПП → УП → ИКР → ОП → Р

С этими понятиями мы уже знакомились, когда говорили о терминологии, поэтому здесь лишь коротко объясним связь между ними для большей наглядности схемы.

В первую очередь формулируется поверхностное противоречие (ПП), которое логично выделяется из условия задачи. О нем, как правило, говорит сам заказчик. Зачастую ПП - это нежелательный эффект, который нужно устранить, предъявив к системе определенные требования. Так определяют углубленное противоречие (УП).

Дальше ТС представляется такой, какой она должна быть в результате устранения нежелательного эффекта - избавившейся от негативного фактора и сохранившей положительные качества. Таким образом формулируется ИКР. Когда разработана концепция идеального результата, он сравнивается с текущим состоянием системы, на основании чего ищутся причины ее несовершенства Эти причины и составляют ОП - обостренное противоречие, выявление и устранение которых приводит к решению проблемы.

Последовательность, описанная выше, характерна для основных модификаций АРИЗ. За время своего существования алгоритм развивался и продолжает развиваться в направлении формализации и детализации описанной последовательности.

Г. С. Альтшуллер в книге «Алгоритм изобретения» писал, что постоянно совершенствовал свой алгоритм, проведя за этой работой 25 лет. Каждую модификацию он проверял на практике, после чего корректировал АРИЗ. Но это не значит, что все предыдущие варианты, вплоть до последнего, не были рабочими. В свое время они успешно применялись изобретателями, а дальнейшие модификации учитывали все возрастающий опыт решения разнообразных задач, что поступательно делало АРИЗ более универсальным.

Ниже схематически представлены основные, но не все, модификации АРИЗ. Более детальное их описание и полный перечень можно найти в статье «История развития АРИЗ» в Викиучебнике.

Обозначения:

  • АП - административное противоречие.
  • ТП - техническое противоречие.
  • ТПу - усиленное техническое противоречие (предельное состояние).
  • ИКР - идеальный конечный результат.
  • ИКР1у - усиленная формулировка ИКР1.
  • ФП - физическое противоречие.
  • ФПмак - физическое противоречие на макроуровне.
  • ФПмик - физическое противоречие на микроуровне.
  • Р - решение

Этапы и примеры решения задач по АРИЗ-85-В

В процессе совершенствования, АРИЗ адаптировался под степень сложности задачи. Самые простые задачи решались с помощью основной цепочки АРИЗ (АП - ТП - ИКР - ФП - Р). Ее, к слову, некоторые современные последователи ТРИЗ считают наиболее удачной и понятной. Но более сложные задачи требовали и более подробного алгоритма для своего решения. АРИЗ-85-В, как последняя модификация, схематически представленный выше, отвечал данной задаче - он довольно детальный, хотя, по мнению отдельных теоретиков ТРИЗ, это также делает его громоздким.

АРИЗ-85-В достаточно сложный инструмент, поэтому не рекомендуется его применять без предварительного изучения основ ТРИЗ и основательной проработки видов противоречий, основной линии решения задач по АРИЗ и логики АРИЗ.

Все модификации АРИЗ имеют свои недостатки, на которые указывают и пытаются решить практики ТРИЗ. Например, конкретно в случае с АРИЗ-85-В части 6-8 недостаточно развиты и структурированы. Также имеется разрыв в логике с включением 4 части. В целом, еще предстоит разработать часть АРИЗ точно определяющую исходную изобретательскую ситуацию и все возможные пути решения задачи.

Как и всякий инструмент, АРИЗ дает результаты, во многом зависящие от умения пользоваться им. Не следует думать, что, прочитав текст алгоритма, можно сразу решать любые задачи. Прочитав описание приемов самбо, не стоит сразу выходить на соревнования. Так и с АРИЗ: единоборство с задачей требует практических навыков.

Проверьте свои знания

Если вы хотите проверить свои знания по теме данного урока, можете пройти небольшой тест, состоящий из нескольких вопросов. В каждом вопросе правильным может быть только 1 вариант. После выбора вами одного из вариантов, система автоматически переходит к следующему вопросу. На получаемые вами баллы влияет правильность ваших ответов и затраченное на прохождение время. Обратите внимание, что вопросы каждый раз разные, а варианты перемешиваются.

Дата публикации: 03.11.2010

В отличие от обыденного понимания противоречия как конфликта между желаниями человека и реальной ситуацией, в ТРИЗ выявлены и конкретизированы несколько типов противоречий, основными из которых являются техническое и физическое .
Традиционные методы проектирования предусматривают поиск компромисса между требованиями к различным частям проектируемой системы, т.е. нацелены на сглаживание возникающих противоречий. При улучшении одного параметра системы другие, как правило, ухудшаются - в этом случае выбирается оптимальное решение.
Если у скоростного самолета маленькие крылья, то для взлета и посадки ему требуется длинная полоса. Поэтому конструкторы стремятся к компромиссу и разрабатывают крылья, обеспечивающие оптимальное значение скорости, при котором полоса еще сохраняет приемлемые размеры.
ТРИЗ рекомендует, напротив, предельно обострить противоречие, что позволяет найти сильное решение.
Крыло с изменяемой геометрией может становиться маленьким на высоте и большим при взлете и посадке самолета. На высоте такой самолет имеет высокую скорость, а для посадки ему не нужна специальная длинная полоса (рис. 1).

Техническое противоречие - ситуация, когда улучшение одного эксплуатационного параметра системы приводит к недопустимому ухудшению другого.
Именно изучение примеров сильных изобретений в патентном фонде и позволило выявить ряд специальных приемов разрешения технических противоречий. Приемы указывают лишь общее направление преобразований, направляя изобретателя в область сильных идей. Конкретные же решения можно найти по аналогии с приемом или примером, его иллюстрирующим. Один и тот же прием может применяться для решения задач из совершенно разных областей техники.
Вот два примера решения задач из гидротехники и двигателестроения.

Обкатка двигателя

Обкатка двигателя - важная операция его изготовления. Двигатель запускают без нагрузки, и все его трущиеся части начинают притираться, прирабатываться друг к другу. Процесс этот довольно длительный и требует значительного расхода топлива. Как ускорить приработку трущихся частей при обкатке двигателя?
Решить такую задачу, не зная специальных приемов, довольно сложно. Использование приема разрешения технических противоречий "Применить вред в пользу" дает мощную подсказку для решения этой задачи. Прием рекомендует:
а) использовать вредные факторы (в частности, вредное воздействие среды) для получения положительного эффекта,
б) устранить вредный фактор за счет сложения с другим вредным фактором,
в) усилить вредный фактор до такой степени, чтобы он перестал быть вредным.
Решение, соответствующее рекомендации пункта а: приработка деталей ускоряется в несколько раз, если подавать в двигатель не очищенный воздух, а запыленный.

Уменьшение энергии потока

Поток воды, мчащийся с горы, обладает огромной разрушительной силой. Он может повредить гидротехнические сооружения. Как уменьшить энергию потока?
Здесь можно применить тот же прием "Применить вред в пользу".
Использовав рекомендацию пункта б, получили следующее решение: русло потока разделяют на несколько рукавов, которые направляют навстречу друг другу (рис. 4.59). Потоки сталкиваются и гасят энергию друг друга.

Для удобства выделения и разрешения технического противоречия Г.С. Альтшуллером была разработана таблица разрешения технических противоречий . Она организована следующим образом (рис. 2).
По вертикали располагаются типовые параметры, которые по условию задачи необходимо улучшить. По горизонтали - параметры, которые при этом недопустимо ухудшаются. На пересечении строк и колонок таблицы указаны номера приемов, позволяющих с наибольшей вероятностью устранить техническое противоречие, возникшее между улучшаемым и ухудшающимся параметрами. Для построения этой таблицы Г.С. Альтшуллер использовал 40 наиболее эффективных приемов разрешения технических противоречий.
Предварительные концепции решения при помощи приемов можно получить и без использования Таблицы противоречий. Для этого нужно последовательно проанализировать возможность применения каждого из 40 приемов. Каждый изобретатель постепенно компонует список своих наиболее часто применяемых приемов.
Практическое применение приемов разрешения технических противоречий имеет следующую особенность: рекомендации, описанные в каждом из приемов, не следует понимать буквально. Наибольший эффект достигается, если их воспринимать как подсказку, исходный материал для размышлений.

Рис.2. Таблица разрешения противоречий, разработанная Г.С. Альтшуллером

Например, прием 25: изменение окраски. Если понимать эту рекомендацию буквально, то поле действий резко сужается. Если же трактовать этот прием как изменение свойств поверхности вообще, то возможности получения новых идей неизмеримо вырастают. В данном случае речь может идти об изменении оптических свойств поверхности, ее шероховатости, температуры, о нанесении какого-то дополнительного вещества и т.п.

Физическое противоречие - это ситуация, при которой к некоторому элементу технической системы или его части предъявляются взаимоисключающие в физическом смысле требования.
В отличие от технического физическое противоречие возникает не между параметрами технической системы, а описывает противоречивые требования к одному ее элементу или, даже, какой-то его части. Формулируется физическое противоречие следующим образом: "Чтобы удовлетворять требованиям задачи, данная зона должна обладать свойством "X" (например, быть подвижной), чтобы выполнять какую-то функцию и обладать свойством "не-Х" (например, быть неподвижной)".

Пример физического противоречия: лобовое стекло автомобиля должно быть твердым, жестким, чтобы сопротивляться встречному потоку воздуха, и должно быть гибким, эластичным, чтобы не поранить водителя при разрушении. Такое противоречие разрешается применением триплексных стекол, когда между двумя наружными стеклами располагается внутренний мягкий слой.
Основные приемы разрешения физических противоречий:
1. Если от элемента требуется проявление противоположных свойств в одно и то же время, то такое противоречие разрешается разнесением этих свойств в пространстве.
2. Если от элемента требуется проявление противоположных свойств в одном и том же месте, то такое противоречие разрешается разнесением этих свойств во времени.
3. Если от элемента требуется проявление противоположных свойств в одно и то же время и в одном и том же месте, то такое противоречие разрешается в надсистеме.

Перекресток

Как организовано дорожное движение, например проезд автомобилями перекрестков? Если не соблюдать никаких правил, то все автомобили будут пытаться проехать перекресток одновременно. Это касается и тех автомобилей, которые должны ехать в первую очередь (например, скорая помощь).
При этом неизбежны столкновения, поскольку возникает физическое противоречие: два или больше автомобилей пытаются оказаться в одном и том же месте пространства в одно и то же время.

Одна дорога располагается над другой. Автомобили пересекают перекресток на разных уровнях и не мешают друг другу (рис. 3).

Применяется светофор. Автомобили проезжают перекресток в соответствии с сигналом светофора.

Специальные машины с включенными сигналами, например, скорая помощь, имеют право первоочередного проезда перекрестка. Этот порядок устанавливается в надсистеме, определяется специальными правилами дорожного движения и действует на всех дорогах.

Дисплей

Экран любого дисплея составлен из множества мельчайших квадратиков - пикселей. Изображение получается за счет того, что каждый пиксель может становиться то светлее, то темнее и генерировать свет любого желаемого цвета. Чтобы получить движущуюся картинку, кадры изображения на экране меняются 24 раза в секунду, яркость и цвет пикселей должны меняться с такой же частотой.
Таким образом, для цветного дисплея возникает следующее противоречие: цвет пикселя должен постоянно изменяться, в то время, как технические ограничения позволяют получить пиксель только одного цвета.
Как разрешается это противоречие в пространстве?
Пиксель разделяется на некоторое число подпикселей, в минимальном случае - на три, каждый из которых дает только один цвет - или красный, или зеленый, или синий. Это основные цвета спектра, и их смешение в определенных пропорциях воспринимается глазом как требуемый цвет (рис. 4, а). Здесь соблюдается правило: "один показанный кадр - один световой импульс".

Как разрешается это противоречие во времени?
Специалистами компании Samsung разработана специальная технология работы жидкокристаллического экрана, называющаяся UFS, что можно расшифровать как "дисплей очень высокого качества изображения". Согласно этой технологии не нужно делить пиксель на три подпикселя. Необходимые яркость и цвет пикселя обеспечиваются за счет установки сзади жидкокристаллического фильтра трех ламп подсветки: красной, зеленой и синей, которые мигают поочередно множество раз за время показа одного кадра изображения (рис. 4, б). Далее формированием нужного цвета управляет жидко-кристаллический фильтр, который может открывать окошечко перед пикселем.
Если нужно показать красную точку, то фильтр открывает пиксель только тогда, когда мигает красная лампа, и держит закрытым, когда мигают синяя и зеленая. Чтобы получить белый цвет, пиксель остается открытым на все время показа одного кадра изображения. Управляя количеством пульсаций разных цветов, можно получить любой желаемый цвет пикселя.
Здесь соблюдается правило: "один показанный кадр - много световых импульсов".
Как разрешается это противоречие в надсистеме?
Поскольку размер пикселя ограничен, то для повышения четкости изображения нужно увеличить число пикселей на экране дисплея, а сам экран отодвинуть от наблюдателя. Тогда видимый размер пикселя будет меньше.
Одно из возможных решений - использование принципов, заложенных в Seamless Technology, в соответствии с которой несколько экранов обычного размера и разрешения объединяются в один большой суперэкран высокой четкости. Поскольку размер пикселя сохраняется прежним, а размер экрана увеличивается, то четкость изображения для наблюдателя повышается (рис. 4, в).

Лыжи

Ходить на лыжах на первый взгляд совсем просто. Лыжник отталкивается одной ногой и скользит, затем отталкивается другой ногой и опять скользит. При этом возникает следующее противоречие:

  • Чтобы хорошо скользить, надо, чтобы трение поверхности лыжи о снег было низким.
  • Чтобы лыжник мог отталкиваться, поверхность лыжи должна иметь хорошее сцепление с лыжней.

Как разрешается это противоречие в пространстве?
Современные беговые лыжи имеют прогиб в средней части. Когда человек просто стоит на лыжах, то часть лыжи под ногой не касается снега (рис. 5, а). Средняя часть лыжи покрывается смазкой на основе воска, обладающей тормозящими свойствами, а начало и конец лыжи пропитываются жировой смазкой, которая обеспечивает хорошее скольжение.
Тогда при толчке, когда средняя часть лыжи прижата к снегу, она тормозится, а при свободном скольжении приподнимается и лыжа касается снега только в местах, которые покрыты "скользкой" смазкой .
Как разрешается это противоречие во времени?
Когда лыжа скользит, она имеет малое сопротивление, когда лыжник отталкивается - большое.
Одна из конструкций - лыжи, обитые камусом - мехом с наклонным расположением ворса. Такая лыжа хорошо скользит, но не проскальзывает назад при отталкивании или движении в гору.
Подобный эффект можно получить, используя явление, открытое В. Петренко . Если на скользящей поверхности лыжи закрепить тонкие электроды и подать на них небольшой отрицательный заряд, скольжение заметно улучшается. Если же заряд будет положительный, то резко увеличивается сцепление лыжи со снегом (рис. 5, б). Лыжнику нужно надеть на пояс легкую батарею и управляющее устройство, а на лыжах закрепить датчики давления. При толчке устройство должно подать на лыжу положительный заряд, при скольжении - отрицательный.
Как разрешается это противоречие в надсистеме?
Заставить лыжи двигаться, не отталкиваясь, можно, если просто ехать с горки. Можно использовать какой-то буксировщик и двигаться за мотоциклом или снегоходом, воздушным змеем или парашютом, использовать лошадь или собаку и т.п.

Выделение и разрешение противоречий - очень сильный инструмент решения изобретательских задач. Он дает возможность не сглаживать проблемы, а, наоборот, предельно обострять их и разрешать, устраняя нежелательные эффекты в ситуации.


Литература:

1. Альтшуллер Г.С. Найти идею. - Новосибирск: Наука, 1986.

2. Пентти Содерлин. Лыжи - превосходный пример для ТРИЗ.
http://www.gnrtr.com/problems/ru/p08.html

4. Виктор Петренко: Электричество уберет лед с дорог и ускорит лыжи. // Веб-сайт МЕМБРАНА.

Административное противоречие

Административное противоречие (АП) звучит так: «надо улучшить систему, но я не знаю как сделать это» . Это противоречие является самым слабым и может быть снято либо изучением дополнительных материалов, либо принятием/снятием административных решений.

В глубине АП лежат технические противоречия (ТП).

Техническое противоречие (ТП): если известными способами улучшить одну часть (или один параметр) технической системы, недопустимо ухудшится другая часть (или другой параметр). Поэтому техническое противоречие звучит так: «улучшение одного параметра системы приводит к ухудшению другого параметра» .

Правильно сформулированное ТП обладает определенной эвристической ценностью. Переход от АП к ТП резко понижает размерность задачи, сужает поле поиска решений и позволяет перейти от метода проб и ошибок к алгоритму (АРИЗ), который либо предлагает применить один или несколько стандартных технических приёмов, либо (в случае сложных задач) указывает на одно или несколько физических противоречий.

Техническое противоречие можно отобразить следующей схемой:

Шаги по формулированию технического противоречия:

Шаг Пример
1. Выбрать техническую систему Окно Акваланг
2. Определить цель развития ТС - улучшить какую-либо характеристику Повысить пропускание света Увеличить срок автономной службы
3. Предположить какой элемент ТС можно изменить и как, чтобы достичь цели Увеличить площадь стекла Увеличить размер воздушных баллонов
4. Выявить, какая полезная характеристика ТС при этом ухудшится Ухудшиться теплозащита Ухудшиться манёвренность аквалангиста
5. На основе шага 3 и 4 сформировать техническое противоречие Увеличивая площадь стекла в окне, мы улучшаем освещённость в комнате, но ухудшаем способность теплозащиты Увеличивая объём баллона, увеличиваем длительность автономного плавания, но при этом акваланг становиться менее удобным для маневра
6. Измените улучшаемое свойство на противоположное и постройте противоречие, обратное сделанному в шаге 5 Уменьшая площадь стекла в окне, мы улучшаем способность теплозащиты, но при этом ухудшаем освещённость в комнате Уменьшая объём баллона, делаем акваланг более удобным для манёвра, но при этом снижается длительность автономного плавания

Для решения задач, связанных с техническими противоречиями используют:

1) Формулировку Идеальной Системы, что приводит в область сильных решений.

Физическое противоречие

В физическом противоречии (ФП) к одной и той же части системы предъявляются взаимопротивоположные требования. Таким образом, при формулировке физического противоречия «для улучшения системы какая-то её часть должна находиться в разных физических состояниях одновременно, что невозможно» .

Основные понятия классической ТРИЗ, в том числе, противоречия, были определены еще в книгах Г.С. Альтшуллера и с тех пор не подвергались серьезной ревизии и уточнению.

Сегодня ТРИЗ применяется не только в сфере развития технических систем, но и в других сферах человеческой деятельности, в частности, в сферы развития информационных и бизнес-систем. Для успешного применения ТРИЗ в этих сферах требуется согласование понятий, в том числе, противоречий, с понятиями, которые используются специалистами по информационным и бизнес-системам.

Сегодня уже предпринимаются попытки, например, в , провести такую ревизию понятий. Однако пока не решены некоторые проблемы, в том числе,

  1. Плохо определена связь между административным и техническим противоречием.
  2. Нет единой модели, описывающей разные виды противоречий, в частности, как соотносится противоречие альтернативных систем с техническим и физическим противоречиями.
  3. Наименования и структура видов противоречий плохо подходят для использования в других (не-технических) областях.

В данной статье предлагается общая схема понятия противоречий, в которой устранены указанные недостатки.

Требования и ограничения

Понятие «требование» является одним из ключевых в инженерной деятельности. Пожалуй, наиболее зрелые технологии управления требованиями сегодня используются в таких сферах, как системная инженерия и инженерия программного обеспечения .

В системной инженерии сегодня принято различать 2 уровня требований:

  1. Система рассматривается в виде «чёрного ящика». Требования к системе описывают, что от системы хотят ее стейкхолдеры, а также что необходимо надсистеме, в которую входит рассматриваемая система. Такого рода требования называются требованиями стейкхолдеров .
  2. Система рассматривается в виде «прозрачного ящика» на различных стадиях жизненного цикла. Соответственно, такие требования включают предположения о том, как система должна быть устроена (состав и структура системы), а также как она должна себя вести (функционирование системы). Такого рода требования называются системными требованиями .

Очевидно, что системные требования связаны с требованиями стейкхолдеров. По сути, системные требования описывают способы, посредством которых в системе должны реализовываться требования стейкхолдеров.

Особый вид требований в системной инженерии – это ограничения, которым должна удовлетворять система. Широко применяемое в ТРИЗ понятие «нежелательный эффект» полностью соответствует понятию «ограничение».

Пример. Компания «К» внедрила систему электронного документооборота. Данная система позволила планировать сроки обработки и длительность маршрута каждого документа в подразделениях компании «К». Для этого в компании «К» для каждого вида документа установлены нормативные сроки его обработки в подразделении.
Однако в деятельности компании «К» присутствуют документы, которые поступают от внешних контрагентов «А» (накладные, счета и т.п.), а также документы, маршрут обработки которых предполагает их передачу контрагентам «А» и последующий возврат в компанию «К» (коммерческие предложения, договоры, проектная документация и т.п.).
Одно из возможных решений – это согласование с контрагентами «А» для определенных видов документов нормативных сроков их обработки у контрагента. Но не все контрагенты согласны такие нормативы устанавливать и соблюдать. В некоторых случаях согласование нормативов невозможно из-за сроков или по каким-либо другим причинам.

В приведенном выше примере можно выделить следующие требования стейкхолдеров:

  1. Руководство компании «К» хочет, чтобы в системе документооборота устанавливались сроки и маршруты обработки каждого документа.
  2. Руководство контрагента «А» хочет, чтобы документы компании «К» обрабатывались без нормативов.

Системные требования :
(СТ1) Для каждого вида документа и каждого вида обработки в подразделениях компании «К» должны быть установлены сроки выполнения.

Системное ограничение :
(СО1) Для документов, обрабатываемы контрагентами «А», сроки выполнения обработки документов у контрагента неизвестны.

Общая схема противоречий

Административное противоречие

Известно следующее определение административного противоречия (АП): «нужно что-то сделать, а как сделать – неизвестно…» .

В рамках предлагаемой схемы АП может быть представлено как требование и неизвестный (или не определенный) способ его выполнения. Схема административного противоречия представлена на следующем рисунке.

Из представленной схемы следует, что АП описывает неопределенную изобретательскую ситуацию. Для ее уточнения и выявления противоречия необходимо выбрать известный способ выполнения требования.

Например, в приведенном выше примере требование СТ1 (для каждого вида документа и каждого вида обработки в подразделениях компании «К» должны быть установлены сроки выполнения) не может быть реализовано, для случая, когда документ обрабатывается контрагентом. В этом случае имеет место ограничение СО1 (для документов, обрабатываемы контрагентами «А», сроки выполнения обработки документов у контрагента неизвестны).

В рассматриваемом примере административное противоречие может быть определено следующим образом:

Как реализовать требование СТ2 (в системе документооборота нужно установить в нормативный срок обработки документа у контрагента «А»)?

Техническое противоречие

В ТРИЗ техническое противоречие (ТП) определено как …взаимодействия в системе, состоящие, например, в том, что полезное действие вызывает одновременно и вредное. Или – введение (усиление) полезного действия, либо устранение (ослабление) вредного действия вызывает ухудшение (в частности, недопустимое усложнение) одной из частей системы или всей системы в целом .

В рамках предлагаемой схемы ТП может быть представлено следующим образом: известный способ (или его изменение) приводит к возникновению противоречия между 2-мя требованиями. Схема ТП представлена на следующем рисунке.

Из схемы следует, что ТП описывает отношение между способом и противоречивыми требованиями. Соответственно, мы можем использовать для обозначения данной структуры термин «противоречие требований». Данный термин уже используют М. Рубин и В. Кияев в .

Пример. Для реализации требования СТ2 (в системе документооборота нужно установить в нормативный срок обработки документа у контрагента «А») можно использовать следующий известный способ: согласовать с контрагентом «А» нормативный срок обработки документа. Однако использование данного способа нарушит одно из требований стейкхолдеров (руководство контрагента «А» хочет, чтобы документы компании «К» обрабатывались без нормативов).
В этом случае мы получаем противоречие:
Если
согласовать нормативные сроки обработки документов с контрагентом «А»,
То
(+) мы сможем реализовать требование СТ1 (в системе документооборота нужно установить в нормативный срок обработки документа у контрагента «А»),
Но
(-) не реализуем требование стейкхолдера (руководство контрагента «А» хочет, чтобы документы компании «К» обрабатывались без нормативов).

Разделение противоречия на ТП1 и ТП2 в АРИЗ в рамках предлагаемой схемы противоречий представляет собой операцию со способом: изменение способа порождает ТП1, не изменение способа – ТП2. В частном случае, это может быть использование и не использование известного способа.

Например, в системе документооборота ТП1 может быть сформулировано так, как указано выше, а ТП2 – следующим образом:
Если
Не согласовать нормативные сроки обработки документов с контрагентом «А»,
То
i>(+) мы обеспечиваем реализацию требования стейкхолдера (руководство контрагента «А» хочет, чтобы документы компании «К» обрабатывались без нормативов).
Но
(-) мы не сможем реализовать требование СТ1 (в системе документооборота нужно установить в нормативный срок обработки документа у контрагента «А»).

Противоречие альтернативных систем

Понятие альтернативного технического противоречия (АТП) или противоречия альтернативных систем предложено В. Герасимовым и С. Литвиным в методе объединения альтернативных систем в надсистему, описанном в . В соответствии с этим методом пара технических противоречий формулируется в соответствии со следующим шаблоном :

АТП1 : Если система реализована в виде базовой системы, то ее достоинством является (указать), но при этом имеется недостаток (указать).
АТП2 : Если система реализована в виде (указать название альтернативной системы), то ее достоинством является (указать устраненный недостаток базовой системы), но при этом имеется недостаток (указать).

В рамках предлагаемой схемы альтернативное техническое противоречие (АТП) может быть представлено следующим образом.

В ТРИЗ физическое противоречие (ФП) определено следующим образом:
… часть рассматриваемой системы должна находиться в таком-то физическом состоянии, чтобы удовлетворять одному требованию задачи, и должна находиться в противоположном состоянии, чтобы удовлетворять другому требованию задачи .

М. Рубин и В. Кияев в предложили новое наименование для ФП – противоречие свойств (ПС). Их определение выглядит так:
формулировка противоположного состояния того или иного свойства одного элемента системы, необходимое для реализации противоположенных требований к системе.

Другими словами, для определения ФП (ПС) необходимо выделить элемент, который должен обладать противоположными свойствами, чтобы удовлетворить противоречивым требованиям. Очевидно, что объект с противоположными свойствами – это элемент, который входит в состав способа, который был выбран в АП и рассматривался в ТП.

В рамках предлагаемой схемы ФП (ПС) может быть представлено следующим образом:

Например, в противоречии, сформулированном для системы документооборота, мы рассматриваем способ (согласовать нормативные сроки обработки документов с контрагентом «А»). Объект, который лежит в основе противоречия – это срок обработки документа у контрагента «А».

Соответственно, противоречие свойств можно сформулировать следующим образом:
нормативный срок должен быть установлен , чтобы мы сможем реализовать требование СТ1 (в системе документооборота нужно установить в нормативный срок обработки документа у контрагента «А»),

И
нормативный срок не должен быть установлен , чтобы мы смогли реализовать требование стейкхолдера (руководство контрагента «А» хочет, чтобы документы компании «К» обрабатывались без нормативов).

В случае АТП элемент является частью способа, реализованного в базовой системе.

Заключение

Предлагаемая общая схема противоречия отличается от существующих в ТРИЗ определений тем, что для описания противоречия используются понятия «требование» и «способ реализации требований».

Использование в схеме противоречия способа реализации требований позволяет установить связь между административным и техническим противоречием. На уровне административного противоречия нам не известен (либо не выбран) способ реализации требования. Выбирая способ, решатель переходит от административного к техническому противоречию (противоречию требований). Затем, выбирая элемент способа, решатель переходит от ТП (противоречия требований) к ФП (противоречию свойств).

Использование в структуре модели противоречия требований позволяет интегрировать ТРИЗ с достаточно развитыми в различных сферах деятельности технологиями управления требованиями. В перспективе данная схема противоречий и методы работы с ними могут быть интегрированы в системы управления требованиями (RMS) .

Литература

  1. Рубин М.С., Кияев В.И. Основы ТРИЗ и инновации. Применение ТРИЗ в программных и информационных системах: Учебное пособие. 2013.
  2. ISO/IEC 15288:2002. System Engineering. System Life-Cycle Processes.
  3. Software Engineering Body of Knowledge, IEEE, 2004
  4. Альтшуллер Г.С. Найти идею, Введение в теорию решения изобретательских задач, Петрозаводск, Скандинавия, 2003
  5. Альтшуллер Г.С. АРИЗ – значит победа. В сб. Правила игры без правил / Сост.: А.Б. Селюцкий, Петрозаводск, Карелия, 1989.
  6. Альтшуллер Г.С. Алгоритм решения изобретательских задач АРИЗ-85В. 1985.
  7. Герасимов В.М., Литвин С.С. Зачем технике плюрализм? Развитие альтернативных технических систем путем их объединения в надсистему. Ленинград. Журнал ТРИЗ, №1, 1990.
  8. Альтшуллер Г.С., Селюцкий А.Б. Крылья для Икара. Как решать изобретательские задачи. Петрозаводск, Карелия, 1980.

Гин Анатолий, Френклах Григорий

Основные понятия ТРИЗ

Любую задачу можно назвать изобретательской, если для ее решения нужно разрешить противоречие. В ТРИЗ различают три вида противоречий: административное, техническое и физическое. АДМИНИСТРАТИВНОЕ ПРОТИВОРЕЧИЕ возникает, когда необходимо что-то сделать, но неизвестно каким способом.

ПРИМЕР
Необходимо повысить точность обработки какой-либо детали, но как? То ли платить дополнительно рабочему за увеличение точности, то ли использовать более совершенный станок, то ли вообще сменить технологию обработки.

Преодолевая административные противоречия каким-либо способом, сталкиваемся с противоречием техническим.

ПРИМЕР
Допустим, решили увеличить скорость самолета и для этого поставили на него мощные двигатели. Но крылья не могут оторвать от земли потяжелевший самолет. Решили увеличить крылья, но возросшее лобовое сопротивление свело почти на нет мощь новых двигателей.

ТЕХНИЧЕСКОЕ ПРОТИВОРЕЧИЕ — это конфликт внутри технической системы между ее параметрами, узлами, деталями.

При уточнении задачи техническое противоречие заменяется физическим.

ФИЗИЧЕСКОЕ ПРОТИВОРЕЧИЕ возникает между параметрами технической системы в каком-либо одном элементе или даже его части.

ПРИМЕР
Для приведенной выше задачи с самолетом физическое противоречие для крыла звучит так:
ДОЛЖНО БЫТЬ маленькое крыло,
ЧТОБЫ не создавать лобовое сопротивление и не уменьшать скорости самолета, и
ДОЛЖНО БЫТЬ большое крыло,
ЧТОБЫ оторвать самолет от земли.

Физические противоречия в простейших случаях можно разрешить, разделяя противоречивые требования во времени и в пространстве, иногда используют фазовые переходы и другие физические эффекты.

Например, разрешение противоречия во времени: во время полета крыло маленькое, а во время взлета и посадки — большое (крыло с изменяемой геометрией).

Для закрепления материала рассмотрим еще один пример. На игрушечной фабрике решили освоить новинку — летающую куклу Карлсон. Но как сделать куклу достаточно эстетичной и заставить ее летать — непонятно (это АДМИНИСТРАТИВНОЕ противоречие).

В результате разрешения административного противоречия пришли к ТЕХНИЧЕСКОМУ противоречию: если у куклы винт большой, то она летает, но внешний вид у нее ужасный — не Карлсон, а ветряная мельница. Если винт маленький, то внешний вид прекрасный, но летать кукла отказывается.

Физическое противоречие в данном случае можно сформулировать так: винт должен быть большим, чтобы кукла летала, и винт должен быть маленьким, чтобы она была эстетичной. Это противоречие довольно легко разрешается: в «спокойном» состоянии лопасти винта свернуты в рулон, но при вращении они разворачиваются центробежной силой и становятся большими.

Справку подготовили А. Гин и Г. Френклах