Решение квадратных уравнений c 26. Как решать квадратные уравнения

Известно, что оно является частным вариантом равенства ах 2 +вх+с = о, где а, в и с - вещественные коэффициенты при неизвестном х, и где а ≠ о, а в и с будут нулями - одновременно или порознь. Например, с = о, в ≠ о или наоборот. Мы почти вспомнили определение квадратного уравнения.

Трехчлен второй степени равен нулю. Первый его коэффициент а ≠ о, в и с могут принимать любые значения. Значение переменной х тогда будет когда при подстановке обратит его в верное числовое равенство. Остановимся на вещественных корнях, хотя решениями уравнения могут быть и Полным принято называть уравнение, в котором ни один из коэффициентов не равен о, а ≠ о, в ≠ о, с ≠ о.
Решим пример. 2х 2 -9х-5 = о, находим
D = 81+40 = 121,
D положительный, значит корни имеются, х 1 = (9+√121):4 = 5, а второй х 2 = (9-√121):4 = -о,5. Проверка поможет убедиться, что они верные.

Вот поэтапное решение квадратного уравнения

Через дискриминант можно решить любое уравнение, в левой части которого известный квадратный трехчлен при а ≠ о. В нашем примере. 2х 2 -9х-5 = 0 (ах 2 +вх+с = о)

Рассмотрим, какие бывают неполные уравнения второй степени

  1. ах 2 +вх = o. Свободный член, коэффициент с при х 0 , здесь равен нулю, в ≠ o.
    Как решать неполное квадратное уравнение такого вида? Выносим х за скобки. Вспоминаем, когда произведение двух множителей равно нулю.
    x(ax+b) = o, это может быть, когда х = о или когда ax+b = o.
    Решив 2-е имеем x = -в/а.
    В результате имеем корни х 1 = 0, по вычислениям x 2 = -b/a .
  2. Теперь коэффициент при х равен о, а с не равен (≠) о.
    x 2 +с = о. Перенесем с в правую часть равенства, получим x 2 = -с. Это уравнение только тогда имеет вещественные корни, когда -с положительное число (с ‹ о),
    х 1 тогда равен √(-с), соответственно х 2 ― -√(-с). В противном случае уравнение совсем не имеет корней.
  3. Последний вариант: b = c= o, то есть ах 2 = о. Естественно, такое простенькое уравнение имеет один корень, x = о.

Частные случаи

Как решать неполное квадратное уравнение рассмотрели, а теперь возмем любые виды.

  • В полном квадратном уравнении второй коэффициент при х ― четное число.
    Пусть k = o,5b. Имеем формулы для вычисления дискриминанта и корней.
    D/4 = k 2 - ас, корни вычисляются так х 1,2 = (-k±√(D/4))/а при D › o.
    x = -k/a при D = o.
    Нет корней при D ‹ o.
  • Бывают приведенные квадратные уравнения, когда коэффициент при х в квадрате равен 1, их принято записывать x 2 +рх+ q = o. На них распространяются все вышеприведенные формулы, вычисления же несколько проще.
    Пример, х 2 -4х-9 = 0. Вычисляем D: 2 2 +9, D = 13.
    х 1 = 2+√13, х 2 = 2-√13.
  • Кроме того, к приведенным легко применяется В ней говорится, что сумма корней уравнения равна -p, второму коэффициенту с минусом (имеется ввиду противоположный знак), а произведение этих же корней будет равно q, свободному члену. Проверьте, как легко можно было бы устно определить корни этого уравнения. Для неприведенных (при всех коэффициентах, не равных нулю) эта теорема применима так: сумма x 1 +x 2 равна -в/а, произведение х 1 ·х 2 равно с/a.

Сумма свободного члена с и первого коэффициента а равна коэффициенту b. В этой ситуации уравнение имеет не менее чем один корень (легко доказывается), первый обязательно равен -1, а второй -с/а, если он существует. Как решать неполное квадратное уравнение, можно проверить самостоятельно. Проще простого. Коэффициенты могут находиться в некоторых соотношениях между собой

  • x 2 +x = o, 7х 2 -7 = o.
  • Сумма всех коэффициентов равна о.
    Корни у такого уравнения - 1 и с/а. Пример, 2х 2 -15х+13 = o.
    x 1 = 1, х 2 = 13/2.

Существует ряд других способов решения разных уравнениий второй степени. Вот, например, метод выделения из данного полинома полного квадрата. Графических способов несколько. Когда часто имеешь дело с такими примерами, научишься «щелкать» их, как семечки, ведь все способы приходят на ум автоматически.

Более простым способом. Для этого вынесите z за скобки. Вы получите : z(аz + b) = 0. Множители можно расписать: z=0 и аz + b = 0, так как оба могут давать в результате ноль. В записи аz + b = 0 перенесем второй вправо с другим знаком. Отсюда получаем z1 = 0 и z2 = -b/а. Это и есть корни исходного .

Если же имеется неполное уравнение вида аz² + с = 0, в данном случае находятся простым переносом свободного члена в правую часть уравнения. Также поменяйте при этом его знак. Получится запись аz² = -с. Выразите z² = -с/а. Возьмите корень и запишите два решения - положительное и отрицательное значение корня квадратного.

Обратите внимание

При наличии в уравнении дробных коэффициентов помножьте все уравнение на соответствующий множитель так, чтобы избавиться от дробей.

Знание о том, как решать квадратные уравнения, необходимо и школьникам, и студентам, иногда это может помочь и взрослому человеку в обычной жизни. Существует несколько определенных методов решений.

Решение квадратных уравнений

Квадратным уравнение вида a*x^2+b*x+c=0. Коэффициент х является искомой переменной, a, b, c - числовые коэффициенты. Помните, что знак «+» может меняться на знак «-».

Для того чтобы решить данное уравнение, необходимо воспользоваться теоремой Виета или найти дискриминант. Самым распространенным способом является нахождение дискриминанта, так как при некоторых значениях a, b, c воспользоваться теоремой Виета не представляется возможным.

Чтобы найти дискриминант (D), необходимо записать формулу D=b^2 - 4*a*c. Значение D может быть больше, меньше или равно нулю. Если D больше или меньше нуля, то корня будет два, если D=0, то остается всего один корень, более точно можно сказать, что D в этом случае имеет два равнозначных корня. Подставьте известные коэффициенты a, b, c в формулу и вычислите значение.

После того как вы нашли дискриминант, для нахождения х воспользуйтесь формулами: x(1) = (- b+sqrt{D})/2*a; x(2) = (- b-sqrt{D})/2*a, где sqrt - это функция, означающая извлечение квадратного корня из данного числа. Посчитав эти выражения, вы найдете два корня вашего уравнения, после чего уравнение считается решенным.

Если D меньше нуля, то он все равно имеет корни. В школе данный раздел практически не изучается. Студенты вузов должны знать о том, что появляется отрицательное число под корнем. От него избавляются выделяя мнимую часть, то есть -1 под корнем всегда равно мнимому элементу «i», который умножается на корень с таким же положительным числом. К примеру, если D=sqrt{-20}, после преобразования получается D=sqrt{20}*i. После этого преобразования, решение уравнения сводится к такому же нахождению корней, как было описано выше.

Теорема Виета заключается в подборе значений x(1) и x(2). Используется два тождественных уравнения: x(1) + x(2)= -b; x(1)*x(2)=с. Причем очень важным моментом является знак перед коэффициентом b, помните, что этот знак противоположен тому, который стоит в уравнении. С первого взгляда кажется, что посчитать x(1) и x(2) очень просто, но при решении вы столкнетесь с тем, что числа придется именно подбирать.

Элементы решения квадратных уравнений

По правилам математики некоторые можно разложить на множители: (a+x(1))*(b-x(2))=0, если вам посредством формул математики удалось преобразовать подобным образом данное квадратное уравнение, то смело записывайте ответ. x(1) и x(2) будут равны рядом стоящим коэффициентам в скобках, но с противоположным знаком.

Также не стоит забывать про неполные квадратные уравнения. У вас может отсутствовать какое-то из слагаемых, если это так, то все его коэффициенты просто равны нулю. Если перед x^2 или x ничего не стоит, то коэффициенты а и b равны 1.

», то есть уравнения первой степени. В этом уроке мы разберем, что называют квадратным уравнением и как его решать.

Что называют квадратным уравнением

Важно!

Степень уравнения определяют по наибольшей степени, в которой стоит неизвестное.

Если максимальная степень, в которой стоит неизвестное — «2 », значит, перед вами квадратное уравнение.

Примеры квадратных уравнений

  • 5x 2 − 14x + 17 = 0
  • −x 2 + x +
    1
    3
    = 0
  • x 2 + 0,25x = 0
  • x 2 − 8 = 0

Важно! Общий вид квадратного уравнения выглядит так:

A x 2 + b x + c = 0

«a », «b » и «c » — заданные числа.
  • «a » — первый или старший коэффициент;
  • «b » — второй коэффициент;
  • «c » — свободный член.

Чтобы найти «a », «b » и «c » нужно сравнить свое уравнение с общим видом квадратного уравнения «ax 2 + bx + c = 0 ».

Давайте потренируемся определять коэффициенты «a », «b » и «c » в квадратных уравнениях.

5x 2 − 14x + 17 = 0 −7x 2 − 13x + 8 = 0 −x 2 + x +
Уравнение Коэффициенты
  • a = 5
  • b = −14
  • с = 17
  • a = −7
  • b = −13
  • с = 8
1
3
= 0
  • a = −1
  • b = 1
  • с =
    1
    3
x 2 + 0,25x = 0
  • a = 1
  • b = 0,25
  • с = 0
x 2 − 8 = 0
  • a = 1
  • b = 0
  • с = −8

Как решать квадратные уравнения

В отличии от линейных уравнений для решения квадратных уравнений используется специальная формула для нахождения корней .

Запомните!

Чтобы решить квадратное уравнение нужно:

  • привести квадратное уравнение к общему виду «ax 2 + bx + c = 0 ». То есть в правой части должен остаться только «0 »;
  • использовать формулу для корней:

Давайте на примере разберем, как применять формулу для нахождения корней квадратного уравнения. Решим квадратное уравнение.

X 2 − 3x − 4 = 0


Уравнение « x 2 − 3x − 4 = 0 » уже приведено к общему виду «ax 2 + bx + c = 0 » и не требует дополнительных упрощений. Для его решения нам достаточно применить формулу нахождения корней квадратного уравнения .

Определим коэффициенты «a », «b » и «c » для этого уравнения.


x 1;2 =
x 1;2 =
x 1;2 =
x 1;2 =

С её помощью решается любое квадратное уравнение.

В формуле «x 1;2 = » часто заменяют подкоренное выражение
«b 2 − 4ac » на букву «D » и называют дискриминантом . Более подробно понятие дискриминанта рассматривается в уроке «Что такое дискриминант ».

Рассмотрим другой пример квадратного уравнения.

x 2 + 9 + x = 7x

В данном виде определить коэффициенты «a », «b » и «c » довольно сложно. Давайте вначале приведем уравнение к общему виду «ax 2 + bx + c = 0 ».

X 2 + 9 + x = 7x
x 2 + 9 + x − 7x = 0
x 2 + 9 − 6x = 0
x 2 − 6x + 9 = 0

Теперь можно использовать формулу для корней.

X 1;2 =
x 1;2 =
x 1;2 =
x 1;2 =
x =

6
2

x = 3
Ответ: x = 3

Бывают случаи, когда в квадратных уравнениях нет корней. Такая ситуация возникает, когда в формуле под корнем оказывается отрицательное число.

Формулы корней квадратного уравнения. Рассмотрены случаи действительных, кратных и комплексных корней. Разложение на множители квадратного трехчлена. Геометрическая интерпретация. Примеры определения корней и разложения на множители.

Основные формулы

Рассмотрим квадратное уравнение:
(1) .
Корни квадратного уравнения (1) определяются по формулам:
; .
Эти формулы можно объединить так:
.
Когда корни квадратного уравнения известны, то многочлен второй степени можно представить в виде произведения сомножителей (разложить на множители):
.

Далее считаем, что - действительные числа.
Рассмотрим дискриминант квадратного уравнения :
.
Если дискриминант положителен, , то квадратное уравнение (1) имеет два различных действительных корня:
; .
Тогда разложение квадратного трехчлена на множители имеет вид:
.
Если дискриминант равен нулю, , то квадратное уравнение (1) имеет два кратных (равных) действительных корня:
.
Разложение на множители:
.
Если дискриминант отрицателен, , то квадратное уравнение (1) имеет два комплексно сопряженных корня:
;
.
Здесь - мнимая единица, ;
и - действительная и мнимая части корней:
; .
Тогда

.

Графическая интерпретация

Если построить график функции
,
который является параболой, то точки пересечения графика с осью будут корнями уравнения
.
При , график пересекает ось абсцисс (ось ) в двух точках.
При , график касается оси абсцисс в одной точке.
При , график не пересекает ось абсцисс.

Ниже приводятся примеры таких графиков.

Полезные формулы, связанные с квадратным уравнением

(f.1) ;
(f.2) ;
(f.3) .

Вывод формулы для корней квадратного уравнения

Выполняем преобразования и применяем формулы (f.1) и (f.3):




,
где
; .

Итак, мы получили формулу для многочлена второй степени в виде:
.
Отсюда видно, что уравнение

выполняется при
и .
То есть и являются корнями квадратного уравнения
.

Примеры определения корней квадратного уравнения

Пример 1


(1.1) .

Решение


.
Сравнивая с нашим уравнением (1.1), находим значения коэффициентов:
.
Находим дискриминант:
.
Поскольку дискриминант положителен, , то уравнение имеет два действительных корня:
;
;
.

Отсюда получаем разложение квадратного трехчлена на множители:

.

График функции y = 2 x 2 + 7 x + 3 пересекает ось абсцисс в двух точках.

Построим график функции
.
График этой функции является параболой. Она пересевает ось абсцисс (ось ) в двух точках:
и .
Эти точки являются корнями исходного уравнения (1.1).

Ответ

;
;
.

Пример 2

Найти корни квадратного уравнения:
(2.1) .

Решение

Запишем квадратное уравнение в общем виде:
.
Сравнивая с исходным уравнением (2.1), находим значения коэффициентов:
.
Находим дискриминант:
.
Поскольку дискриминант равен нулю, , то уравнение имеет два кратных (равных) корня:
;
.

Тогда разложение трехчлена на множители имеет вид:
.

График функции y = x 2 - 4 x + 4 касается оси абсцисс в одной точке.

Построим график функции
.
График этой функции является параболой. Она касается оси абсцисс (ось ) в одной точке:
.
Эта точка является корнем исходного уравнения (2.1). Поскольку этот корень входит в разложение на множители два раза:
,
то такой корень принято называть кратным. То есть считают, что имеется два равных корня:
.

Ответ

;
.

Пример 3

Найти корни квадратного уравнения:
(3.1) .

Решение

Запишем квадратное уравнение в общем виде:
(1) .
Перепишем исходное уравнение (3.1):
.
Сравнивая с (1), находим значения коэффициентов:
.
Находим дискриминант:
.
Дискриминант отрицателен, . Поэтому действительных корней нет.

Можно найти комплексные корни:
;
;
.

Тогда


.

График функции не пересекает ось абсцисс. Действительных корней нет.

Построим график функции
.
График этой функции является параболой. Она не пересекает ось абсцисс (ось ). Поэтому действительных корней нет.

Ответ

Действительных корней нет. Корни комплексные:
;
;
.

Превращение полного квадратного уравнения в неполное выглядит так (для случая \(b=0\)):

Для случаев, когда \(с=0\) или когда оба коэффициента равны нулю - всё аналогично.

Обратите внимание, что про равенство нулю \(a\) речи не идет, оно равно нулю быть не может, так как в этом случае превратиться в :

Решение неполных квадратных уравнений.

Прежде всего, надо понимать, что неполное квадратное уравнение все-таки является , поэтому может быть решено также как и обычное квадратное (через ). Для этого просто дописываем недостающий компонент уравнения с нулевым коэффициентом.

Пример : Найдите корни уравнения \(3x^2-27=0\)
Решение :

У нас неполное квадратное уравнение с коэффициентом \(b=0\). То есть, мы можем записать уравнение в следующем виде:

\(3x^2+0\cdot x-27=0\)

Фактически здесь то же самое уравнение, что и в начале, но теперь его можно решать как обычное квадратное. Сначала выписываем коэффициенты.

\(a=3;\) \(b=0;\) \(c=-27;\)

Вычислим дискриминант по формуле \(D=b^2-4ac\)

\(D=0^2-4\cdot3\cdot(-27)=\)
\(=0+324=324\)

Найдем корни уравнения по формулам
\(x_{1}=\)\(\frac{-b+\sqrt{D}}{2a}\) и \(x_{2}=\)\(\frac{-b-\sqrt{D}}{2a}\)

\(x_{1}=\)\(\frac{-0+\sqrt{324}}{2\cdot3}\) \(=\)\(\frac{18}{6}\) \(=3\)

\(x_{2}=\)\(\frac{-0-\sqrt{324}}{2\cdot3}\) \(=\)\(\frac{-18}{6}\) \(=-3\)


Записываем ответ

Ответ : \(x_{1}=3\); \(x_{2}=-3\)


Пример : Найдите корни уравнения \(-x^2+x=0\)
Решение :

Опять неполное квадратное уравнение, но теперь нулю равен коэффициент \(c\). Записываем уравнение как полное.