Паропроницаемость стен – избавляемся от вымыслов. Сопротивление паропроницанию материалов и тонких слоев пароизоляции Определение уровня проницаемости пара

Таблица паропроницаемости строительных материалов

Информацию по паропроницаемости я собрал, скомпоновав несколько источников. По сайтам гуляет одна и та же табличка с одними и теми же материалами, но я её расширил, добавил современные значения паропроницаемости с сайтов производителей строительных материалов. Также я сверил значения с данными из документа «Свод правил СП 50.13330.2012» (приложение Т), добавил те, которых не было. Так что на данный момент это наиболее полная таблица.

Материал Коэффициент паропроницаемости,
мг/(м*ч*Па)
Железобетон 0,03
Бетон 0,03
Раствор цементно-песчаный (или штукатурка) 0,09
Раствор цементно-песчано-известковый (или штукатурка) 0,098
Раствор известково-песчаный с известью (или штукатурка) 0,12
Керамзитобетон, плотность 1800 кг/м3 0,09
Керамзитобетон, плотность 1000 кг/м3 0,14
Керамзитобетон, плотность 800 кг/м3 0,19
Керамзитобетон, плотность 500 кг/м3 0,30
Кирпич глиняный, кладка 0,11
Кирпич, силикатный, кладка 0,11
Кирпич керамический пустотелый (1400 кг/м3 брутто) 0,14
Кирпич керамический пустотелый (1000 кг/м3 брутто) 0,17
Крупноформатный керамический блок (тёплая керамика) 0,14
Пенобетон и газобетон, плотность 1000 кг/м3 0,11
Пенобетон и газобетон, плотность 800 кг/м3 0,14
Пенобетон и газобетон, плотность 600 кг/м3 0,17
Пенобетон и газобетон, плотность 400 кг/м3 0,23
Плиты фибролитовые и арболит, 500-450 кг/м3 0,11 (СП)
Плиты фибролитовые и арболит, 400 кг/м3 0,26 (СП)
Арболит, 800 кг/м3 0,11
Арболит, 600 кг/м3 0,18
Арболит, 300 кг/м3 0,30
Гранит, гнейс, базальт 0,008
Мрамор 0,008
Известняк, 2000 кг/м3 0,06
Известняк, 1800 кг/м3 0,075
Известняк, 1600 кг/м3 0,09
Известняк, 1400 кг/м3 0,11
Сосна, ель поперек волокон 0,06
Сосна, ель вдоль волокон 0,32
Дуб поперек волокон 0,05
Дуб вдоль волокон 0,30
Фанера клееная 0,02
ДСП и ДВП, 1000-800 кг/м3 0,12
ДСП и ДВП, 600 кг/м3 0,13
ДСП и ДВП, 400 кг/м3 0,19
ДСП и ДВП, 200 кг/м3 0,24
Пакля 0,49
Гипсокартон 0,075
Плиты из гипса (гипсоплиты), 1350 кг/м3 0,098
Плиты из гипса (гипсоплиты), 1100 кг/м3 0,11
Минвата, каменная, 180 кг/м3 0,3
Минвата, каменная, 140-175 кг/м3 0,32
Минвата, каменная, 40-60 кг/м3 0,35
Минвата, каменная, 25-50 кг/м3 0,37
Минвата, стеклянная, 85-75 кг/м3 0,5
Минвата, стеклянная, 60-45 кг/м3 0,51
Минвата, стеклянная, 35-30 кг/м3 0,52
Минвата, стеклянная, 20 кг/м3 0,53
Минвата, стеклянная, 17-15 кг/м3 0,54
Пенополистирол экструдированный (ЭППС, XPS) 0,005 (СП); 0,013; 0,004 (???)
Пенополистирол (пенопласт), плита, плотность от 10 до 38 кг/м3 0,05 (СП)
Пенополистирол, плита 0,023 (???)
Эковата целлюлозная 0,30; 0,67
Пенополиуретан, плотность 80 кг/м3 0,05
Пенополиуретан, плотность 60 кг/м3 0,05
Пенополиуретан, плотность 40 кг/м3 0,05
Пенополиуретан, плотность 32 кг/м3 0,05
Керамзит (насыпной, т.е. гравий), 800 кг/м3 0,21
Керамзит (насыпной, т.е. гравий), 600 кг/м3 0,23
Керамзит (насыпной, т.е. гравий), 500 кг/м3 0,23
Керамзит (насыпной, т.е. гравий), 450 кг/м3 0,235
Керамзит (насыпной, т.е. гравий), 400 кг/м3 0,24
Керамзит (насыпной, т.е. гравий), 350 кг/м3 0,245
Керамзит (насыпной, т.е. гравий), 300 кг/м3 0,25
Керамзит (насыпной, т.е. гравий), 250 кг/м3 0,26
Керамзит (насыпной, т.е. гравий), 200 кг/м3 0,26; 0,27 (СП)
Песок 0,17
Битум 0,008
Полиуретановая мастика 0,00023
Полимочевина 0,00023
Вспененный синтетический каучук 0,003
Рубероид, пергамин 0 - 0,001
Полиэтилен 0,00002
Асфальтобетон 0,008
Линолеум (ПВХ, т.е. ненатуральный) 0,002
Сталь 0
Алюминий 0
Медь 0
Стекло 0
Пеностекло блочное 0 (редко 0,02)
Пеностекло насыпное, плотность 400 кг/м3 0,02
Пеностекло насыпное, плотность 200 кг/м3 0,03
Плитка (кафель) керамическая глазурованная ≈ 0 (???)
Плитка клинкерная низкая (???); 0,018 (???)
Керамогранит низкая (???)
ОСП (OSB-3, OSB-4) 0,0033-0,0040 (???)

Узнать и указать в этой таблице паропроницаемость всех видов материалов трудно, производителями создано огромное количество разнообразных штукатурок, отделочных материалов. И, к сожалению, многие производители не указывают на своей продукции такую важную характеристику как паропроницаемость.

Например, определяя значение для теплой керамики (позиция «Крупноформатный керамический блок»), я изучил практически все сайты производителей этого вида кирпича, и только лишь у некоторых из них в характеристиках камня была указана паропроницаемость.

Также у разных производителей разные значения паропроницаемости. Например, у большинства пеностекольных блоков она нулевая, но у некоторых производителей стоит значение «0 - 0,02».

Показаны 25 последних комментариев. Показать все комментарии (63).
























Часто в строительных статьях встречается выражение — паропроницаемость бетонных стен. Означает она способность материала пропускать водяные пары, по-народному – «дышать». Данный параметр имеет большое значение, так как в жилом помещении постоянно образуются продукты жизнедеятельности, которые необходимо постоянно выводить наружу.

Общие сведения

Если не создать нормальную вентиляцию в помещении, в нем будет создаваться сырость, что приведет к появлению грибка и плесени. Их выделения могут принести вред нашему здоровью.

С другой стороны — паропроницаемость влияет на способность материала накапливать в себе влагу.Это также плохой показатель, так как чем больше он сможет ее в себе удерживать, тем выше вероятность возникновения грибка, гнилостных проявлений, а также разрушений при замерзании.

Паропроницаемость обозначают латинской буквой μ и измеряют в мг/(м*ч*Па). Величина показывает количество водяного пара, которое может пройти через стеновой материал на площади 1 м 2 и при его толщине 1 м за 1 час, а также разнице наружного и внутреннего давления 1 Па.

Высокая способность проведения водяных паров у:

  • пенобетона ;
  • газобетона ;
  • перлитобетона ;
  • керамзитобетона .

Замыкает таблицу — тяжелый бетон.

Совет: если вам необходимо в фундаменте сделать технологический канал, вам поможет алмазное бурение отверстий в бетоне.

Газобетон

  1. Использование материала в качестве ограждающей конструкции дает возможность избежать скопления ненужной влаги внутри стен и сохранить ее теплосберегающие свойства, что предотвратит возможное разрушение.
  2. Любой газобетонный и пенобетонный блок имеет в своем составе ≈ 60% воздуха, благодаря чему паропроницаемость газобетона признана на хорошем ровне, стены в данном случае могут «дышать».
  3. Водяные парысвободно просачиваются через материал, но не конденсируются в нем.

Паропроницаемость газобетона, так же, как и пенобетона, значительно превосходит тяжелый бетон – у первого 0,18-0,23, у второго — (0,11-0,26), у третьего – 0,03 мг/м*ч*Па.

Особо хочется подчеркнуть, что структура материала обеспечивает ему эффективное удаление влаги в окружающую среду, так что даже при замерзании материала он не разрушается – она вытесняется наружу через открытые поры. Поэтому, подготавливая , следует учитывать данную особенность и подбирать соответствующие штукатурки, шпаклевки и краски.

Инструкция строго регламентирует, чтобы их параметры паропроницаемости были не ниже газобетонных блоков, применяющихся для строительства.

Совет: не забывайте, что параметры паропроницаемости зависят от плотности газобетона и могут отличаться наполовину.

К примеру, если вы используете D400 – у них коэффициент равен 0,23 мг/м ч Па, а у D500 он уже ниже — 0,20 мг/м ч Па. В первом случае цифры говорят о том, что стены будут иметь более высокую «дышащую» способность. Так что при подборе отделочных материалов для стен из газобетона D400, следите, чтобы у них коэффициент паропроницаемости был такой же или выше.

В противном случае это приведет к ухудшению отвода влаги из стен, что скажется на снижении уровня комфорта проживания в доме. Также следует учесть, что если вами была применена для наружной отделки паропроницаемая краска для газобетона, а для внутренней – непаропроницаемые материалы, пар будет просто скапливаться внутри помещения, делая его влажным.

Керамзитобетон

Паропроницаемость керамзитобетонных блоков зависит от количества наполнителя в его составе, а именно керамзита – вспененной обожженной глины. В Европе такие изделия называют эко- или биоблоками.

Совет: если у вас не получается разрезать керамзитоблок обычным кругом и болгаркой, используйте алмазный.
Например, резка железобетона алмазными кругами дает возможность быстро решить поставленную задачу.

Полистиролбетон

Материал является еще одним представителем ячеистых бетонов. Паропроницаемость полистиролбетона обычно приравнивается к дереву. Изготовить его можно своими руками.

Сегодня больше внимания начинает уделяться не только тепловым свойствам стеновых конструкций, а и комфортности проживания в сооружении. По тепловой инертности и паропроницаемости полистиролбетон напоминает деревянные материалы, а добиться сопротивления теплопередачи можно с помощью изменения его толщины.Поэтому обычно применяют заливной монолитный полистиролбетон, который дешевле готовых плит.

Вывод

Из статьи вы узнали, что есть такой параметр у стройматериалов, как паропроницаемость. Он дает возможность выводить влагу за пределы стен строения, улучшая их прочность и характеристики. Паропроницаемость пенобетона и газобетона, а также тяжелого бетона отличается своими показателями, что необходимо учитывать при выборе отделочных материалов. Видео в этой статье поможет найти вам дополнительную информацию по этой тематике.

Для начала опровергнем заблуждение - «дышит» не ткань, а наше тело. Точнее, поверхность кожи. Человек относится к числу тех животных, чей организм стремится поддерживать температуру тела постоянной вне зависимости от условий внешней среды. Одним из важнейших механизмов нашей терморегуляции являются сокрытые в коже потовые железы. Они же являются частью выделительной системы организма. Выделяемый ими пот, испаряясь с поверхности кожи, уносит с собой часть избыточного тепла. Поэтому, когда нам жарко - мы потеем во избежание перегрева.

Однако, у этого механизма есть один серьёзный недостаток. Влага, быстро испаряясь с поверхности кожи, может спровоцировать переохлаждение, которое приводит к простудным заболеваниям. Конечно, в Центральной Африке, где человек эволюционировал как вид, такая ситуация - скорее редкость. Но в регионах с переменчивой и преимущественно прохладной погодой человеку постоянно приходилось и приходится дополнять свои естественные механизмы терморегуляции различной одеждой.

Способность одежды «дышать» подразумевает её минимальное сопротивление отводу испарений от поверхности кожи и «умение» транспортировать их на лицевую сторону материала, где выделенная человеком влага может улетучиться, «не украв» избыточное количество тепла. Таким образом, «дышащий» материал, из которого изготовлена одежда, помогает организму человека поддерживать оптимальную температуру тела, не допуская перегрева или переохлаждения.

«Дышащие» свойства современных тканей принято описывать в рамках двух параметров - «паропроницаемость» и «воздухопроницаемость». В чём между ними разница и как это влияет на их применение в одежде для спорта и активного отдыха?

Что такое паропроницаемость?

Паропроницаемость - это способность материала пропускать или задерживать водяной пар. В индустрии производства одежды и снаряжения для активного отдыха важное значение имеет высокая способность материала к транспорту водяного пара . Чем она выше, тем лучше, т.к. это позволяет избежать пользователю перегрева и при этом оставаться сухим.

Определённой паропроницаемостью обладают все использующиеся сегодня ткани и утеплители. Однако в численном выражении она представлена только для описания свойств мембран, применяющихся в производстве одежды, и для очень малого количества не водонепроницаемых текстильных материалов. Чаще всего паропроницаемость измеряют в г/м²/24 часа, т.е. количество водяного пара, которое пройдёт через квадратный метр материала за сутки .

Обозначается этот параметр аббревиатурой MVTR («moisture vapor transmission rate» или «скорость прохождения водяного пара» ).

Чем выше значение, тем большей паропроницаемостью обладает материал.

Как измеряют паропроницаемость?

Цифры MVTR получают в результате лабораторных тестов, основанных на различных методиках. В связи с большим количеством переменных, влияющих на работу мембраны - индивидуальный метаболизм, давление и влажность воздуха, площадь материала, пригодная для транспорта влаги, скорость ветра и пр., единого стандартизированного метода исследований для определения паропроницаемости не существует. Поэтому для того, чтобы иметь возможность сравнивать образцы тканей и мембран между собой, производители материалов и готовой одежды используют целый ряд методик. Каждая из них в отдельности описывает паропроницаемость ткани или мембраны в определённом диапазоне условий. Сегодня наиболее часто применяются следующие тестовые методики:

«Японский» тест с «вертикально стоящей чашкой» (JIS L 1099 A-1)

Тестовый образец растягивается и герметично фиксируется поверх чашки, внутрь которой помещён сильный влагопоглотитель - хлорид кальция (CaCl2). Чашка помещается на определённое время в термогидростат, в котором поддерживается температура воздуха 40°C и влажность 90%.

В зависимости от того, как изменится вес влагопоглотителя за контрольное время, определяется MVTR. Методика хорошо подходит для определения паропроницаемости не водонепроницаемых тканей, т.к. тестируемый образец не находится в прямом контакте с водой.

«Японский» тест с «перевёрнутой чашкой» (JIS L 1099 B-1)


Тестовый образец растягивается и герметично фиксируется над сосудом с водой. После он переворачивается и помещается над чашкой с сухим влагопоглотителем - хлоридом кальция. Через контрольное время влагопоглотитель взвешивается, в результате чего вычисляется MVTR.

Тест B-1 наиболее популярен, так как демонстрирует наибольшие цифры среди всех методик, определяющих скорость прохождения водяных паров. Чаще всего именно его результаты публикуют на ярлыках. У наиболее «дышащих» мембран показатель MVTR по тесту B1 больше или равен 20 000 г/м²/24ч по тесту B1. Ткани со значениями 10-15 000 можно отнести к ощутимо паропроницаемым, по крайней мере в рамках не очень интенсивных нагрузок. Наконец, для одежды, предполагающей малую подвижность часто оказывается достаточно паропроницаемости в пределах 5-10 000 г/м²/24ч.

Метод теста JIS L 1099 B-1 довольно точно иллюстрирует работу мембраны в идеальных условиях (когда на её поверхности есть конденсат и влага транспортируется в более сухую среду, обладающую меньшей температурой).

Тест с «потеющей пластиной» или RET (ISO - 11092)


В отличие от тестов, определяющих скорость транспорта водяного пара сквозь мембрану, методика RET исследует то, насколько тестируемый образец сопротивляется прохождению водяного пара.

Образец ткани или мембраны помещается поверх плоской пористой металлической пластины, под которую подведён нагревательный элемент. Температура пластины поддерживается на уровне температуры поверхности человеческой кожи (около 35°C). Вода, испаряющаяся от нагревательного элемента, проходит через пластину и тестируемый образец. Это приводит к потерям тепла на поверхности пластины, температура которой должна поддерживаться постоянной. Соответственно, чем выше уровень энергозатрат для поддержания температуры пластины постоянной, тем ниже сопротивляемость тестируемого материала к прохождению сквозь него водяного пара. Обозначается этот параметр как RET (Resistance of Evaporation of a Textile - «сопротивление материала испарению» ). Чем ниже значение RET, тем выше «дышащие» свойства тестируемого образца мембраны или иного материала.

    RET 0-6 - экстремально дышащие; RET 6-13 - хорошо дышащие; RET 13-20 - дышащие; RET более 20 - не дышащие.


Оборудование для проведения теста ISO-11092. Справа - камера с «потеющей пластиной». Компьютер необходим для получения и обработки результатов и контроля процедуры теста © thermetrics.com

В лаборатории института Hohenstein, с которым сотрудничают Gore-Tex, эта методика дополнена тестированием реальных образцов одежды людьми на беговой дорожке. В этом случае результаты тестов с «потеющей пластиной» корректируются в соответствии с замечаниями испытателей.


Тестирование одежды с Gore-Tex на беговой дорожке © goretex.com

Тест RET наглядно иллюстрирует работу мембраны в реальных условиях, однако является также самым дорогим и продолжительным по времени в приведённом списке. По этой причине его могут позволить себе далеко не все компании-производители одежды для активного отдыха. В то же время RET является сегодня основной методикой для оценки паропроницаемости мембран от компании Gore-Tex.

Методика RET обычно хорошо коррелирует с результатами теста B-1. Другими словами, мембрана которая показала хорошие «дышащие» свойства в тесте RET, продемонстрирует хорошие «дышащие» свойства в тесте с «перевёрнутой чашкой».

К сожалению, ни одна из тестовых методик не способна заменить собой остальные. Более того, не всегда их результаты коррелируют друг с другом. Мы увидели, что процесс определения паропроницаемости материалов в различных методиках имеет множество отличий, имитируя разные условия работы.

Вдобавок, различные мембранные материалы работают по разному принципу. Так, например, поровые ламинаты обеспечивают сравнительно свободное прохождение паров воды через имеющиеся в их толще микроскопические поры, а беспоровые мембраны транспортируют влагу на лицевую поверхность как промокашка - с помощью гидрофильных полимерных цепочек в своей структуре. Вполне естественно, что один тест может имитировать выигрышные условия для работы беспоровой мембранной плёнки, например, когда влага вплотную прилегает к её поверхности, а другой - для микропористой.

Вкупе всё это означает, что сравнивать между собой материалы на основе данных, полученных от разных тестовых методик практически не имеет смысла . Также не имеет смысла сравнивать показатели паропроницаемости разных мембран, если тестовая методика хотя бы для одной из них неизвестна.

Что такое воздухопроницаемость?

Воздухопроницаемость - способность материала пропускать через себя воздух под влиянием перепада его давления. При описании свойств одежды часто употребляется синоним этого термина - «продуваемость», т.е. то, насколько материал «ветростоек».

В отличие от методик оценки паропроницаемости в этой области царит относительное однообразие. Для оценки воздухопроницаемости используется так называемый тест Фразера, который определяет, какой объём воздуха пройдёт через материал за контрольное время. Скорость воздушного потока по условиям теста обычно составляет 30 миль в час, но может меняться.

Единицей измерения служит кубический фут воздуха, проходящий через материал за одну минуту. Обозначается аббревиатурой CFM (cubic feet per minute ).

Чем больше значение - тем выше воздухопроницаемость («продуваемость») материала. Так беспоровые мембраны демонстрируют абсолютную «непродуваемость» - 0 CFM. Тестовые методики чаще всего определяются стандартами ASTM D737 или ISO 9237, которые, впрочем, дают идентичные результаты.

Точные цифры CFM публикуются производителями тканей и готовой одежды сравнительно редко. Чаще всего этот параметр используется для характеристики ветрозащитных свойств в описаниях различных материалов, разработанных и применяемых в рамках производства одежды SoftShell.

С недавних пор о воздухопроницаемости производители стали «вспоминать» гораздо чаще. Дело в том, что вместе с воздушным потоком с поверхности нашей кожи испаряется гораздо больше влаги, что снижает риск перегрева и скопления конденсата под одеждой. Так, мембрана Polartec Neoshell имеет чуть большую, чем традиционные поровые мембраны, воздухопроницаемость (0.5 CFM против 0.1). Благодаря этому Polartec удалось добиться существенно лучшей работы своего материала в условиях ветреной погоды и быстрого движения пользователя. Чем выше давление воздуха снаружи, тем лучше Neoshell отводит пары воды от тела за счёт большего воздухообмена. При этом мембрана продолжает защищать пользователя от ветрового охлаждения, блокируя порядка 99% воздушного потока. Этого оказывается достаточно, чтобы противостоять даже штормовым ветрам, и потому Neoshell нашёл себя даже в производстве однослойных штурмовых палаток (яркий пример - палатки BASK Neoshell и Big Agnes Shield 2).

Но прогресс не стоит на месте. Сегодня есть масса предложений хорошо утеплённых средних слоёв одежды с частичной воздухопроницаемостью, которые также могут использоваться как самостоятельное изделие. В них используются либо принципиально новые утеплители - как Polartec Alpha, либо применяются синтетические объёмные утеплители с очень низкой степенью миграции волокон, которые позволяют использовать менее плотные «дышащие» ткани. Так, в куртках Sivera Гамаюн используется ClimaShield Apex, в Patagonia NanoAir - утеплитель под торговой маркой FullRange™, который производится японской компанией Toray под оригинальным названием 3DeFX+. Идентичный утеплитель применяется в горнолыжных куртках и брюках компании Mountain Force в рамках технологии «12 way stretch» и горнолыжной одежде Kjus. Сравнительно высокая воздухопроницаемость тканей, в которые заключены эти утеплители позволяет создать утепляющий слой одежды, который не будет препятствовать отводу испаренной влаги с поверхности кожи, помогая пользователю избежать как намокания, так и перегрева.

SoftShell-одежде . В дальнейшем другие производители создали внушительное количество их аналогов, что привело к повсеместному распространению тонкого, сравнительно прочного, «дышащего» нейлона в одежде и снаряжении для спорта и активного отдыха.

Всем известно, что комфортный температурный режим, и, соответственно, благоприятный микроклимат в доме обеспечивается во многом благодаря качественной теплоизоляции. В последнее время ведется очень много споров о том, какой должна быть идеальная теплоизоляция и какими характеристиками она должна обладать.

Существует ряд свойств теплоизоляции, важность которых не вызывает сомнения: это теплопроводность, прочность и экологичность. Совершенно очевидно, что эффективная теплоизоляция должна обладать низким коэффициентом теплопроводности, быть прочной и долговечной, не содержать веществ, вредных для человека и окружающей среды.

Однако есть одно свойство теплоизоляции, которое вызывает массу вопросов – это паропроницаемость. Должен ли утеплитель пропускать водяной пар? Низкая паропроницаемость – достоинство это или недостаток?

Аргументы «за» и «против»

Сторонники ватных утеплителей уверяют, что высокая паропропускная способность – это несомненный плюс, паропроницаемый утеплитель позволит стенам вашего дома «дышать», что создаст благоприятный микроклимат в помещении даже при отсутствии какой-либо дополнительной системы вентиляции.

Адепты же пеноплэкса и его аналогов заявляют: утеплитель должен работать как термос, а не как дырявый «ватник». В свою защиту они приводят следующие аргументы:

1. Стены – это вовсе не «органы дыхания» дома. Они выполняют совершенно иную функцию – защищают дом от воздействия окружающей среды. Органами дыхания для дома является вентиляционная система, а также, частично, окна и дверные проемы.

Во многих странах Европы приточно-вытяжная вентиляция устанавливается в обязательном порядке в любом жилом помещении и воспринимается такой же нормой, как и централизованная система отопления в нашей стране.

2. Проникновение водяного пара сквозь стены является естественным физическим процессом. Но при этом количество этого проникающего пара в жилом помещении с обычным режимом эксплуатации настолько мало, что его можно не брать в расчет (от 0,2 до 3%* в зависимости от наличия/отсутствия системы вентиляции и её эффективности).

* Погожельски Й.А, Каспэркевич К. Тепловая защита многопанельных домов и экономия энергии, плановая тема NF-34/00, (машинопись), библиотека ITB.

Таким образом, мы видим, что высокая паропроницаемость не может выступать в качестве культивируемого преимущества при выборе теплоизоляционного материала. Теперь попробуем выяснить, может ли данное свойство считаться недостатком?

Чем опасна высокая паропроницаемость утеплителя?

В зимнее время годы, при минусовой температуре за пределами дома, точка росы (условия, при которых водяной пар достигает насыщения и конденсируется) должна находиться в утеплителе (в качестве примера взят экструдированный пенополистирол).

Рис.1 Точка росы в плитах ЭППС в домах с облицовкой по утеплителю

Рис.2 Точка росы в плитах ЭППС в домах каркасного типа

Получается, что если теплоизоляция имеет высокую паропроницаемость, то в ней может скапливаться конденсат. Теперь выясним, чем же опасен конденсат в утеплителе?

Во-первых, при образовании в утеплителе конденсата он становится влажным. Соответственно, снижаются его теплоизоляционные характеристики и, наоборот, увеличивается теплопроводность. Таким образом, утеплитель начинает выполнять противоположную функцию – выводить тепло из помещения.

Известный в области теплофизики эксперт, д.т.н., профессор, К.Ф. Фокин заключает: «Гигиенисты рассматривают воздухопроницаемость ограждений как положительное качество, обеспечивающее естественную вентиляцию помещений. Но с теплотехнической точки зрения воздухопроницаемость ограждений скорее отрицательное качество, так как в зимнее время инфильтрация (движение воздуха изнутри-наружу) вызывает дополнительные потери тепла ограждениями и охлаждение помещений, а эксфильтрация (движение воздуха снаружи-вовнутрь) может неблагоприятно отразиться на влажностном режиме наружных ограждений, способствуя конденсации влаги».

Кроме того в СП 23-02-2003 «Тепловая защита зданий» раздел №8 указано, что воздухопроницаемость ограждающих конструкций для жилых зданий должна быть не более 0,5 кг/(м²∙ч).

Во-вторых , вследствие намокания теплоизолятор утяжеляется. Если мы имеем дело с ватным утеплителем, то он проседает, и образуются мостики холода. К тому же возрастает нагрузка на несущие конструкции. Через несколько циклов: мороз – оттепель такой утеплитель начинает разрушаться. Чтобы защитить влагопроницаемый утеплитель от намокания его прикрывают специальными пленками. Возникает парадокс: утеплитель дышит, но ему требуется защита полиэтиленом, либо специальной мембраной, которая сводит на нет все его «дыхание».

Ни полиэтилен, ни мембрана не пропускают молекулы воды в утеплитель. Из школьного курса физики известно, что молекулы воздуха (азот, кислород, углекислый газ) размером больше, чем молекула воды. Соответственно, воздух также не способен проходить через подобные защитные пленки. В итоге мы получаем помещение с дышащим утеплителем, но покрытое воздухонепроницаемой пленкой – своеобразную теплицу из полиэтилена.