Чем вызывается жесткость воды. Жесткость воды

О.С.ГАБРИЕЛЯН, Т.Н.ПОПКОВА,
Г.А.СИВКОВА, С.А.СЛАДКОВ

Вода в нашей жизни

Учебно-методическое пособие к элективному курсу
для 9 класса основной школы или 10–11 классов
базового уровня средней школы

Продолжение. Начало см. в № 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15/2009

§ 12. ЖЕСТКОСТЬ ВОДЫ И СПОСОБЫ Ее УСТРАНЕНИЯ

Цель. Расширить и углубить представления учащихся о реакциях обмена, используя сведения о способах устранения жесткости воды. Воспитывать бережное отношение к водным ресурсам.

Форма занятия. Беседа, рассказ. Демонстрационный эксперимент.

Оборудование и реактивы. Прибор для получения газов, стеклянная трубка, пробирки, пробиркодержатель; известковая вода, растворы хлорида кальция, соляной кислоты, карбоната натрия, кусочки мрамора.

План занятия

Понятие о жесткости воды.

Виды жесткости воды.

Способы устранения жесткости воды.

Понятие о жесткости воды

Абсолютно чистой воды в природе не существует. Она всегда содержит различные примеси как в растворенном, так и во взвешенном состоянии, от их концентрации и природы зависит пригодность воды для бытовых и промышленных нужд. Для питьевой воды установлены строгие стандарты по содержанию элементов, цвету, вкусу и др. Так, рН – показатель кислотности или щелочности среды – может находиться в пределах от 6,5 до 9,5.

Определенные требования предъявляются к воде, используемой в промышленности. Например, она не должна портить продукцию, вызывать коррозию металлических деталей и механизмов, засорять насосы и трубы. В настоящее время все больше предприятий стремятся создать замкнутые циклы (очистка – производство – очистка – производство и т.д.).

Вода, в которой растворены соли кальция и магния, обладает особым свойством – жесткостью. Известно, что она образует плотные слои накипи (в основном карбонат и сульфат кальция и карбонат магния) на стенках паровых котлов, кипятильников, чайников. Солевой нарост имеет плохую теплопроводность, поэтому вызывает местный перегрев стенок котла и коррозию корпуса. Случайное отделение части накипи от раскаленной стенки может вызвать быстрое испарение воды и даже взрыв котла.

В жесткой воде плохо растворяются некоторые пищевые продукты, хуже развариваются овощи, снижается качество приготовленной пищи. При стирке белья в такой воде увеличивается расход моющих средств. На ткани осаждаются кальциево-магниевые соли высших карбоновых кислот, входящих в состав мыла. Ими пропитываются нити, изделия теряют былую мягкость. Поэтому для стирки мылом в жесткой воде требуется предварительное умягчение воды – устранение жесткости. Синтетические моющие средства обеспечивают более эффективный и экономичный процесс стирки даже в морской воде, т.к. они не образуют нерастворимых солей кальция и магния.

Технологи на фармацевтических и пищевых фабриках особенно тщательно контролируют качество воды. При проведении количественных анализов принято выражать жесткость воды в миллимоль эквивалентах ионов кальция и магния, содержащихся в 1 л воды:

1 ммоль экв/л Са 2+ соответствует 20,04 мг/л;

1 ммоль экв/л Mg 2+ соответствует 12,16 мг/л.

В аналитической практике пользуются и другими способами выражения концентрации, например молярной (моль/л). По этому показателю жесткости воды ее подразделяют на три группы:

– мягкая вода, имеющая жесткость до 2 ммоль экв/л;

– среднежесткая – от 2 до 10 ммоль экв/л;

– жесткая – более 10 ммоль экв/л;

(ммоль – миллимоль, тысячная доля моль).

Виды жесткости воды

Разные соли кальция и магния обусловливают разную жесткость воды (см. схему).

Схема

Способы устранения жесткости

Во многих сферах деятельности человека нужна вода с определенным содержанием растворенных в ней солей. На водоочистительных предприятиях используют различные методы очистки воды и ее умягчения.

Устранение жесткости, или умягчение, воды заключается в удалении ионов кальция и магния, которое осуществляется тремя методами: термическим, химическим и физико-химическим.

1. Термический метод – кипячение воды .

При кипячении воды происходит разложение гидрокарбонатов кальция и магния с образованием углекислого газа и карбонатов этих металлов, которые выпадают в осадок:

Сa(HCO 3) 2 СaCO 3 + СО 2 + H 2 O,

Mg(HCO 3) 2 MgCO 3 H 2 O + СО 2 .

Таким образом, в результате кипячения воды устраняется жесткость, обусловленная присутствием именно гидрокарбонатов. Это так называемая устранимая (временная) жесткость.

Благодаря этому методу мы легко можем приготовить душистый чай или вкусный компот. Витамины и другие полезные соединения мягкой водой лучше извлекаются из натуральных или засушенных фруктов. Многие хозяйки об этом знают и для приготовления компотов, лечебных настоев пользуются предварительно прокипяченной водой, ее аккуратно сливают, не взмучивая карбонатный осадок.

2. Химические методы.

Для некоторых химических целей требуется достаточно полная очистка воды от солей, которые создают жесткость. Для ее устранения используют химические реагенты, такие, как карбонат натрия, гидроксид кальция, ортофосфат натрия.

а) Известково-содовый метод основан на обработке воды гашеной известью, при этом устраняется временная жесткость, а также связываются ионы Fe 2+ .

При добавлении соды происходит устранение постоянной жесткости:

Учащимся предлагается самостоятельно дописать схемы реакций.

Использование соды при стирке позволяет экономить моющие средства, а отсутствие хлопьевидных осадков улучшает качество ручной и машинной стирки, особенно легко удаляются пятна различных видов технических загрязнений.

б) Фосфатный метод базируется на образовании нерастворимых ортофосфатов кальция и магния, выпадающих в осадок:

3CaSO 4 + 2Na 3 PO 4 = 3Na 2 SO 4 + Ca 3 (PO 4) 2 ,

3MgCl 2 + 2Na 3 PO 4 = 6NaCl + Mg 3 (РO 4) 2 .

Реагенты, составляющие основу химического метода умягчения воды, входят в состав средств, предотвращающих образование накипи на стиральных машинах-автоматах. Антинакипины значительно продлевают срок службы дорогостоящей техники, экономят энергию за счет увеличения теплоотдачи нагревательных элементов и улучшают качество стирки, усиливая действие стирального порошка.

Учащимся можно предложить роль экспертов, которые оценивают состав реагентов – антинакипинов, указываемый на упаковках. При внимательном прочтении можно убедиться, что сода, фосфаты и полифосфаты натрия входят в качестве основных реагентов, предотвращающих образование накипи.

3. Физико-химический метод .

Он основан на использовании ионообменных смол – ионитов. Они представляют собой твердые полиэлектролиты, у которых ионы одного знака заряда закреплены на твердой матрице, а противоионы способны переходить в раствор.

Иониты, используемые в ионообменных установках, достаточно компактны и применяются в большинстве современных фильтров для очистки и умягчения воды, ими оснащены, например, пищеблоки морских лайнеров, подводных лодок.

Способность к ионному обмену проявляется у ряда природных алюмосиликатов. Например, при взбалтывании воды с небольшим количеством глины между ними происходит обмен ионами. Данный эффект используется в лечебных целях, глиняные аппликации эффективны в профилактике заболеваний кожи, в ней восстанавливается водно-электролитный баланс.

Широкое применение находят синтетические ионообменники, они включают и полимерные материалы. В зависимости от того, какие ионы переходят в раствор с поверхности, различают катиониты и аниониты.

Катиониты содержат ионы Na + или Н + – это сульфоугли или алюмосиликаты. Аниониты включают подвижные гидроксид-ионы, это так называемые искусственные смолы.

Умягчение воды в промышленных ионообменниках производится фильтрованием через слой катионита толщиной 2–4 м, его поверхность достаточно велика, т.к. полимерная основа состоит из маленьких гранул диаметром 0,5–1,5 мм. В порах этих частичек остаются ионы кальция, вместо них в воду поступают ионы натрия, и вода становится мягкой.

Катионит периодически регенерируют, промывая его концентрированным раствором хлорида натрия, при этом кальций вынужден покидать ранее занятые «позиции» в ионообменнике, его место занимают ионы натрия. Так обновляют адсорбент в фильтре для воды «Гейзер». Для Н + -катионитов промывку ведут раствором соляной кислоты, аниониты регенерируют раствором гидроксида натрия.

Демонстрационный эксперимент заключается в получении жесткой воды (учитель пропускает углекислый газ через раствор известковой воды до растворения получившегося осадка), и устранении ее жесткости при нагревании или добавлении раствора соды. Аналогично демонстрируется устранение постоянной жесткости воды, содержащей растворы хлорида кальция.

Вопросы для беседы и закрепления материала

1. Какими ионами обусловлена жесткость воды и в каких единицах она измеряется?

2. Назовите виды жесткости воды.

3. Почему необходимо устранять жесткость воды?

4. Как влияют соли, придающие воде жесткость, на организм человека?

5. Как понизить жесткость природной воды в быту?

6. Какие способы устранения жесткости воды вы знаете? Подтвердите ответ уравнениями химических реакций.

7. Почему мыло плохо мылится в жесткой воде?

Продолжение следует

«Жесткая» вода - одна из самых распространенных проблем, причем как в загородных домах с автономным водоснабжением, так и в городских квартирах с централизованным водопроводом. Степень жесткости зависит от наличия в воде солей кальция и магния (соли жесткости) и измеряется в миллиграмм — эквиваленте на литр (мг-экв /л). По американской классификации (для питьевой воды) при содержании солей жесткости менее 2 мг-экв /л вода считается «мягкой», от 2 до 4 мг-экв /л — нормальной (повторяем, для пищевых целей!), от 4 до 6 мг-экв /л — жесткой, а свыше 6 мг-экв /л — очень жесткой.

Для многих применений жесткость воды не играет существенной роли (например, для тушения пожаров, полива огорода, уборки улиц и тротуаров). Но в ряде случаев жесткость может создать проблемы. При принятии ванны, мытье посуды, стирке, мытье машины жесткая вода гораздо менее эффективна, чем мягкая. И вот почему:

  • При использовании мягкой воды расходуется в 2 раза меньше моющих средств;
  • Жесткая вода, взаимодействуя с мылом, образует «мыльные шлаки», которые не смываются водой и оставляют малосимпатичные разводы на посуде и поверхности сантехники;
    «Мыльные шлаки» также не смываются с поверхности человеческой кожи, забивая поры и покрывая каждый волос на теле, что может стать причиной появления сыпи, раздражения, зуда;
  • При нагревании воды, содержащиеся в ней соли жесткости кристаллизуются, выпадая в виде накипи. Накипь является причиной 90% отказов водонагревательного оборудования. Поэтому к воде, подвергаемой нагреву в котлах, бойлерах и т.п., предъявляются на порядок более строгие требования по жесткости;
  • Во многих промышленных процессах соли жесткости могут вступить в химическую реакцию, образовав нежелательные промежуточные продукты.

Понятие жесткости

Жесткость воды принято связывать с катионами кальция (Са2+) и в меньшей степени магния (Mg2+). В действительности, все двухвалентные катионы в той или иной степени влияют на жесткость. Они взаимодействуют с анионами, образуя соединения (соли жесткости) способные выпадать в осадок. Одновалентные катионы (например, натрий Na+) таким свойством не обладают.

В данной таблице приведены основные катионы металлов, вызывающие жесткость, и главные анионы, с которыми они ассоциируются

На практике стронций, железо и марганец оказывают на жесткость столь небольшое влияние, что ими, как правило, пренебрегают. Алюминий (Al3+) и трехвалентное железо (Fe3+) также влияют на жесткость, но при уровнях рН, встречающихся в природных водах, их растворимость и, соответственно, «вклад» в жесткость ничтожно малы. Аналогично, не учитывается и незначительное влияние бария (Ва2+).

Виды жесткости

Общая жесткость. Определяется суммарной концентрацией ионов кальция и магния. Представляет собой сумму карбонатной (временной) и некарбонатной (постоянной) жесткости.

Карбонатная жесткость. Обусловлена наличием в воде гидрокарбонатов и карбонатов (при рН>8.3) кальция и магния. Данный тип жесткости почти полностью устраняется при кипячении воды и поэтому называется временной жесткостью. При нагреве воды гидрокарбонаты распадаются с образованием угольной кислоты и выпадением в осадок карбоната кальция и гидроксида магния.

Некарбонатная жесткость. Обусловлена присутствием кальциевых и магниевых солей сильных кислот (серной, азотной, соляной) и при кипячении не устраняется (постоянная жесткость).

Единицы измерения

В мировой практике используется несколько единиц измерения жесткости, все они определенным образом соотносятся друг с другом. В России Госстандартом в качестве единицы жесткости воды установлен моль на кубический метр (моль/м3).

Один моль на кубический метр соответствует массовой концентрации эквивалентов ионов кальция (1/2 Ca2+) 20.04 г/м3 и ионов магния (1/2Mg2+) 12.153 г/м3. Числовое значение жесткости, выраженное в молях на кубический метр равно числовому значению жесткости, выраженному в миллиграмм-эквивалентах на литр (или кубический дециметр), т.е. 1моль/м3=1ммоль/л= 1мг-экв /л= 1мг-экв /дм3.

Кроме этого в зарубежных странах широко используются такие единицы жесткости, как немецкий градус (do, dH), французский градус (fo), американский градус, ppm CaCO3.

Соотношение этих единиц жесткости представлено в следующей таблице:

Примечание:
Один немецкий градус соответствует 10 мг/дм3 СаО или 17.86 мг/дм3 СаСО3 в воде.
Один французский градус соответствует 10 мг/дм3 СаСО3 в воде.
Один американский градус соответствует 1 мг/дм3 СаСО3 в воде.

Происхождение жесткости

Ионы кальция (Ca2+) и магния (Mg2+), а также других щелочноземельных металлов, обуславливающих жесткость, присутствуют во всех минерализованных водах. Их источником являются природные залежи известняков, гипса и доломитов. Ионы кальция и магния поступают в воду в результате взаимодействия растворенного диоксида углерода с минералами и при других процессах растворения и химического выветривания горных пород. Источником этих ионов могут служить также микробиологические процессы, протекающие в почвах на площади водосбора, в донных отложениях, а также сточные воды различных предприятий.

Жесткость воды колеблется в широких пределах и существует множество типов классификаций воды по степени ее жесткости.

Обычно в маломинерализованных водах преобладает (до 70%-80%) жесткость, обусловленная ионами кальция (хотя в отдельных редких случаях магниевая жесткость может достигать 50—60 %). С увеличением степени минерализации воды содержание ионов кальция (Са2+) быстро падает и редко превышает 1 г/л. Содержание же ионов магния (Mg2+) в высокоминерализованных водах может достигать нескольких граммов, а в соленых озерах — десятков граммов на один литр воды

В целом, жесткость поверхностных вод, как правило, меньше жесткости вод подземных. Жесткость поверхностных вод подвержена заметным сезонным колебаниям, достигая обычно наибольшего значения в конце зимы и наименьшего в период половодья, когда обильно разбавляется мягкой дождевой и талой водой. Морская и океанская вода имеют очень высокую жесткость (десятки и сотни мг-экв /дм3)

Влияние жесткости

С точки зрения применения воды для питьевых нужд, ее приемлемость по степени жесткости может существенно варьироваться в зависимости от местных условий. Порог вкуса для иона кальция лежит (в пересчете на мг-эквивалент) в диапазоне 2—6 мг-экв /л, в зависимости от соответствующего аниона, а порог вкуса для магния и того ниже. В некоторых случаях для потребителей приемлема вода с жесткостью выше 10 мг-экв /л. Высокая жесткость ухудшает органолептические свойства воды, придавая ей горьковатый вкус и оказывая отрицательное действие на органы пищеварения

Всемирная Организация Здравоохранения не предлагает какой-либо рекомендуемой величины жесткости по показаниям влияния на здоровье. В материалах ВОЗ говорится о том, что хотя ряд исследований и выявил статистически обратную зависимость между жесткостью питьевой воды и сердечно-сосудистыми заболеваниями, имеющиеся данные не достаточны для вывода о причинном характере этой связи. Аналогичным образом, однозначно не доказано, что мягкая вода оказывает отрицательный эффект на баланс минеральных веществ в организме человека

Вместе с тем, в зависимости от рН и щелочности, вода с жесткостью выше 4 мг-экв /л может вызвать в распределительной системе отложение шлаков и накипи (карбоната кальция), особенно при нагревании. Именно поэтому нормами Котлонадзора вводятся очень жесткие требования к величине жесткости воды, используемой для питания котлов (0.05—0.1 мг-экв /л).

Кроме того, при взаимодействии солей жесткости с моющими веществами (мыло, стиральные порошки, шампуни) происходит образование «мыльных шлаков» в виде пены. Это приводит не только к значительному перерасходу моющих средств. Такая пена после высыхания остается в виде налета на сантехнике, белье, человеческой коже, на волосах (неприятное чувство «жестких» волос хорошо известное многим). Главным отрицательным воздействием этих шлаков на человека является то, что они разрушают естественную жировую пленку, которой всегда покрыта нормальная кожа и забивают ее поры. Признаком такого негативного воздействия является характерный «скрип» чисто вымытой кожи или волос. Оказывается, что вызывающее у некоторых раздражение чувство «мылкости» после пользования мягкой водой является признаком того, что защитная жировая пленка на коже цела и невредима. Именно она и скользит. В противном случае, приходится тратиться на лосьоны, умягчающие и увлажняющие кремы и прочие хитрости для восстановления той защиты кожи, которой нас и так снабдила матушка Природа.

Вместе с тем, необходимо упомянуть и о другой стороне медали. Мягкая вода с жесткостью менее 2 мг-экв /л имеет низкую буферную емкость (щелочность) и может, в зависимости от уровня рН и ряда других факторов, оказывать повышенное коррозионное воздействие на водопроводные трубы. Поэтому, в ряде применений (особенно в теплотехнике) иногда приходится проводить специальную обработку воды с целью достижения оптимального соотношения между жесткостью воды и ее коррозионной активностью.

Жесткость воды – свойство воды, которое зависит от содержания в ней главным образом растворенных солей кальция и магния. Эти элементы в природных условиях попадают в воду вследствие воздействия диоксида углерода на карбонатные минералы или в результате биохимических процессов, происходящих в увлажненных слоях почвы.

Суммарное содержание в воде растворенных солей кальция и магния называют общей жесткостью. Общая жесткость подразделяется на карбонатную, обусловленную концентрацией гидрокарбонатов кальция и магния, и некарбонатную , обусловленную присутствием кальциевых и магниевых солей сильных кислот. Поскольку при кипячении воды гидрокарбонаты переходят в карбонаты, которые выпадают в осадок, карбонатную


жесткость называют временной, или устранимой.

Жесткость, остающаяся после кипячения, называется постоянной . Она обусловлена присутствием в воде солей кальция и магния других минеральных кислот (обычно сульфатов, хлоридов, нитратов).

Жесткость выражают числом миллимоль-эквивалентов растворимых солей кальция и магния в 1 дм 3 воды (ммоль-экв/дм 3).По жесткости вода подразделяется следующим образом: очень мягкая (от 0 до 1,5 ммоль-экв/дм 3), мягкая (от 1,5 до 4 ммоль-экв/дм 3), средней жесткости (от 4 до 8 ммоль-экв/дм 3), жесткая (от 8 до 12 ммоль-экв/дм 3), очень жесткая (свыше 12 ммоль-экв/дм 3).

Карбонатная жесткость составляет до 70-80 % от общей жесткости.

Жесткость воды подразделяют на кальциевую и магниевую. Обычно преобладает жесткость, обусловленная ионами кальция (до 70%), однако в отдельных случаях может преобладать и магниевая жесткость.

Жесткость поверхностных вод подвержена заметным сезонным колебаниям, достигая обычно наибольшего значения в конце зимы и наименьшего – в период половодья.

Умеренно жесткая вода не опасна в гигиеническом отношении, так как с водой в организм поступает 20 – 30 % кальция, необходимого для поддержания в норме обмена веществ в организме. Высокая жесткость ухудшает органолептические свойства воды, придавая ей горьковатый вкус и оказывая действие на органы пищеварения. Постоянное потребление очень жесткой воды способствует возникновению мочекаменной болезни. Большие количества солей в воде делают воду непригодной для хозяйственных нужд. В жесткой воде плохо развариваются овощи, перерасходуется мыло при стирке белья, выпадает осадок в водопроводных трубах и т.д. Вода, содержащая такие соли, совершенно непригодна для питания паровых котлов и для охлаждения технологического оборудования из-за образования плотных слоев накипи на внутренних стенках.

Допустимая общая жесткость воды для хозяйственно-питьевого водоснабжения составляет не более 7 ммоль-экв/дм 3 . В некоторых случаях для конкретной системы водоснабжения допустимо увеличение общей жесткости воды до 10 ммоль-экв/дм 3 . Для рыбохозяйственных водоемов общая жесткость воды не должна превышать 4 ммоль-экв/дм 3 .

Раздельное значение карбонатной и некарбонатной жесткости получают, используя значения общей жесткости и щелочности воды. Если щелочность воды обусловлена только присутствием в воде гидрокарбонат-ионов (щелочность по фенолфталеину равна нулю), карбонатная жесткость будет равна общей щелочности (см. лаб. работу № 8). Тогда некарбонатную жесткость определяют как разницу между общей жесткостью и карбонатной

Ж некарб. = Ж общ. – Ж карб.

Если же щелочность воды по фенолфталеину не равна нулю, то определяют только общую жесткость.

Жесткость воды - определенное свойство воды, которое связывают с растворенными в ней соединениями магния и кальция, то есть наличием в воде катионов этих элементов (при повышении температуры соли этих металлов выпадают в осадок и образуют весьма прочные отложения). Жесткость воды во многом определяет пригодность воды для использования как промышленных, так и в бытовых целях. Возникновением накипи мы «благодарны» именно этому показателю.

Этот параметр исчисляют, как сумма миллимолей ионов кальция и магния на 1 литр воды (ммоль/л). 1 ммоль/л соответствует количеству любого вещества в мг/л, равному его молекулярной массе, разделенной на валентность. Величина 1 ммоль/л говорит о содержании в 1 литре воды 20,04 мг/л кальция либо 12,1 б мг/л магния. Для удобства пользуются величиной мг-экв/л, которая соответствует моль/м3. Кроме того, в зарубежных странах широко используются такие единицы жесткости, как немецкий градус (do, dH), французский градус (fo), американский градус, ppm карбоната кальция.

Приборы для определения жесткости воды:

Выделяют 3 типа жесткости воды:

  • временная - карбонатная жесткость , обусловлена присутствием на ряду с кальцием, магнием и железом гидрокарбонатных анионов;
  • постоянная - некарбонатная жесткость , характеризуется присутствием сульфатных, нитратных и хлоридных анионов, соли кальция и магния которых прекрасно растворяются в воде;
  • общая - определяется как суммарная величина наличия солей магния и кальция в воде, то есть суммой карбонатной и некарбонатной жесткости.

Классификация воды по этому параметру :
- мягкая вода - 3,0 мг-экв/л и более
- средняя - от 3,0 до 6,0 мг-экв/л
- жесткая вода - свыше 6,0 мг-экв/мл.

Причиной жесткости воды является подземные залежи известняков, гипса, доломитов, которые растворяются в подземных водах, а также отчасти, других процессов растворения и выветривания горных пород. Обычно в маломинерализованных водах преобладает (до 70%-80%) жесткость воды, обусловленная ионами кальция (хотя в отдельных редких случаях магниевая жесткость может достигать 50-60%). С увеличением степени минерализации воды содержание ионов кальция (Са2+) быстро падает и редко превышает 1 г/л. Содержание же ионов магния (Mg2+) в высокоминерализованных водах может достигать нескольких граммов, а в соленых озерах - десятков граммов на один литр воды.

В целом, жесткость поверхностных вод меньше жесткости вод подземных. Жесткость поверхностных вод подвержена заметным сезонным колебаниям, достигая обычно наибольшего значения в конце зимы и наименьшего в период половодья, когда обильно разбавляется мягкой дождевой и талой водой. Морская и океанская вода имеют очень высокую жесткость (десятки и сотни мг-экв/дм3).

Приемлемость для питьевых нужд зависит от конкретных местных условий. Порог вкуса для иона кальция находится в диапазоне 2-6 мг-экв/л, в зависимости от соответствующего аниона, а порог вкуса для магния - значительно ниже (в отдельных случаях приемлема вода с показателями в 10 мг-экв/л). Жесткая вода имеет горьковатый вкус и негативно воздействует на органы пищеварения, органолептические свойства воды отвечают низкому уровню.

Однако мягкая вода с (менее 2 мг-экв/л) имеет низкую буферную емкость и может, в зависимости от значения рН и других параметров влиять на коррозионную активность водоводов (в данном случае повышать их устойчивость и работоспособность). В теплотехнике в некоторых случаях проводят специальную химподготовку воды с целью достижения оптимального и эффективного соотношения между жесткостью воды и ее коррозионной активностью.