Гетерогенное горение. Диффузионное и кинетическое горение

Перечисленные в предыдущем разделе физические явления наблю­даются в самых разнообразных процессах, различающихся как по природе химических реакций, так и по агрегатному состоянию участвующих в го­рении веществ.

Различают гомогенное, гетерогенное и диффузионное горение.

Глава 1. Основные понятия теории горения

К гомогенному относится горение предварительно перемешан­ных газов*. Многочисленными примерами гомогенного горения явля­ются процессы сгорания газов или паров, в которых окислителем яв­ляется кислород воздуха: горение смесей водорода, смесей оксида уг­лерода и углеводородов с воздухом. В практически важных случаях не всегда выполняется условие полного предварительного перемеши­вания. Поэтому всегда возможны комбинации гомогенного с другими видами горения.

Гомогенное горение может быть реализовано в двух режимах: ламинарном и турбулентном. Турбулентность ускоряет процесс горе­ния за счет дробления фронта пламени на отдельные фрагменты и со­ответственно увеличения площади контакта реагирующих веществ при крупномасштабной турбулентности или ускорения процессов те-пломассопереноса во фронте пламени при мелкомасштабной. Турбу­лентному горению присуща автомодельность: турбулентные вихри увеличивают скорость горения, что приводит к увеличению турбу­лентности.

Все параметры гомогенного горения проявляются и в процессах, в которых окислителем выступает не кислород, а другие газы. Напри­мер, фтор, хлор или бром.

При пожарах наиболее распространены процессы диффузионно­го горения. В них все реагирующие вещества находятся в газовой фа­зе, но предварительно не перемешаны. В случае горения жидкостей и твердых веществ процесс окисления горючего в газовой фазе проис­ходит одновременно с процессом испарения жидкости (или разложе­ния твердого материала) и с процессом смешения.

Простейшим примером диффузионного горения является горе­ние природного газа в газовой горелке. На пожарах реализуется ре­жим турбулентного диффузионного горения, когда скорость горения определяется скоростью турбулентного смешения.

При этом различают макросмешение и микросмешение. Процесс турбулентного смешения включает последовательное дробление газа на все более малые объемы и перемешивание их между собой. На по­следней стадии окончательное молекулярное смешение происходит молекулярной диффузией, скорость которой увеличивается по мере уменьшения масштаба дробления. По завершении макросмешения

* Подобное горение зачастую называют кинетическим.

Корольченко А. Я. Процессы горения и взрыва

Скорость горения определяется процессами микросмешения внутри малых объемов горючего и воздуха.

Гетерогенное горение происходит на поверхности раздела фаз. При этом одно из реагирующих веществ находится в конденсированном со­стоянии, другое (обычно кислород воздуха) поступает за счет диффузии газовой фазы. Обязательным условием гетерогенного горения является очень высокая температура кипения (или разложения) конденсирован­ной фазы. При несоблюдении этого условия горению предшествует ис­парение или разложение. От поверхности в зону горения поступает по­ток пара или газообразных продуктов разложения, и горение происходит в газовой фазе. Такое горение можно отнести к диффузионным квазиге­терогенным, но не полностью гетерогенным, поскольку процесс горения происходит уже не на границе фаз. Развитие такого горения осуществля­ется за счет теплового потока от факела пламени к поверхности мате­риала, который обеспечивает дальнейшее испарение или разложение и поступление горючего в зону горения. В подобных ситуациях возникает смешанный случай, когда реакции горения частично протекают гетеро-генно — на поверхности конденсированной фазы, частично гомогенно — в объеме газовой смеси.

Примером гетерогенного горения является горение каменного и древесного угля. При сгорании этих веществ протекают реакции двояко­го рода. Некоторые сорта каменного угля выделяют при нагревании ле­тучие компоненты. Сгоранию таких углей предшествует их частичное термическое разложение с выделением газообразных углеводородов и водорода, сгорающих в газовой фазе. Кроме того, при сгорании чистого углерода может образовываться оксид углерода СО, догорающий в объ­еме. При достаточном избытке воздуха и высокой температуре поверх­ности угля объемные реакции протекают настолько близко от поверхно­сти, что в определенном приближении дает основание считать такой процесс гетерогенным.

Примером действительно гетерогенного горения является горение тугоплавких нелетучих металлов. Эти процессы могут осложняться об­разованием окислов, покрывающих горящую поверхность и препятст­вующих контакту с кислородом. При большой разнице в физико-химических свойствах между металлом и его окислом в процессе горе­ния окисная пленка растрескивается, и доступ кислорода в зону горения обеспечивается.

Глава 1. Основные понятия теории горения

Горючая среда

Окислители

Окислители – это вещества, атомы которых в химических превращениях принимают электроны. Среди простых веществ к ним относятся все галогены и кислород.

Наиболее распространенным в природе окислителем является кислород воздуха.

На реальных пожарах, горение в основном протекает в воздухе, однако во многих технологических процессах используется воздух, обогащенный кислородом, и даже чистый кислород (например металлургические производства, газовая сварка, резка и т.д.). С атмосферой, обогащенной кислородом можно встретиться в подводных и космических аппаратах, доменных процессах и т.п. Такие горючие системы имеют повышенную пожарную опасность. Это необходимо учитывать при разработке систем пожаротушения, пожарно-профилактических мероприятий и при пожарно-технической экспертизе пожаров.

Помимо кислорода воздуха и галогенов, окислителями в реакциях горения могут выступать и сложные вещества, например, соли кислородсодержащих кислот – нитраты, хлораты и т.п., применяемые в производстве порохов, боевых и промышленных взрывчатых веществ и различных пиротехнических составов.

Смесь горючего и окислителя в одинаковом агрегатном состоянии в определенных пропорциях и способную гореть (а горение возможно только при определенных их соотношениях), называют горючей средой.

Выделяют два вида горючих сред: однородную и неоднородную .

Однородной горючей средой называется предварительно перемешанная смесь горючего с окислителем, а, соответственно неоднородная горючая среда когда горючее и окислитель не перемешаны.

Влияние на процесс горения большого числа факторов обусловливает многообразие видов и режимов горения. Так, в зависимости от агрегатного состояния компонентов горючей смеси горение может быть гомогенным и гетерогенным, от условий смешения компонентов – горением предварительно приготовленной смеси (кинетическое) и диффузионным, от газодинамических условий – ламинарным и турбулентным, и т.д.

Основными видами горения являются гомогенное и гетерогенное.

Гомогенное горение - это процесс взаимодействия горючего и
окислителя, находящихся в одинаковом агрегатном состоянии. Наиболее
широко распространено гомогенное горение газов и паров в воздухе.

Гетерогенное горение - это горение твердых горючих матери-
алов непосредственно на их поверхности.
Характерной особенностью
гетерогенного горения является отсутствие пламени. Примерами его
являются горение антрацита, кокса, древесного угля, нелетучих металлов.
Беспламенное горение в ряде случаев называют тлением.



Как видно из определений, принципиальным отличием гомогенного горения от гетерогенного, является то, что в первом случае горючее и окислитель находятся в одном агрегатном состоянии, во втором – в разных.

При этом необходимо отметить, далеко не всегда горение твердых веществ и материалов является гетерогенным. Это объясняется механизмом горения твердых веществ.

Так, например, горение древесины в воздухе. Для того, чтобы зажечь ее, необходимо поднести какой-либо источник тепла, например пламя от спички или зажигалки, и подождать некоторое время. Возникает вопрос: почему она загорается не сразу? Это объясняется тем, что в начальный период, источник зажигания должен нагреть древесину до определенной температуры, при которой начинается процесс пиролиза, или иными словами термическое разложение. При этом, в результате разложения целлюлозы и других составляющих, начинают выделяться продукты их разложения – горючие газы – углеводороды. Очевидно, что чем больше нагрев, тем больше скорость разложения и, соответственно, скорость выделения горючих газов. И вот только тогда, когда скорость выделения ГГ будет достаточной для создания определенной их концентрации в воздухе, т.е. образования горючей среды, может возникнуть горение. При чем горение не древесины, а продуктов ее разложения – горючих газов. Именно по этому, горение древесины, в большинстве случаев – гомогенное горение, а не гетерогенное.

Вы можете возразить: древесина, в конце концов, начинает тлеть, а тление, как было сказано выше – это гетерогенное горение. Так и есть. Дело в том, что конечными продуктами разложения древесины являются в основном горючие газы и углистый остаток, так называемый кокс. Этот самый углистый остаток все вы видели и даже покупали для приготовления шашлыков. Эти угли примерно на 98% состоят из чистого углерода и не могут выделять ГГ. Угли горят уже в режиме гетерогенного горения, то есть тлеют.

Таким образом, древесина горит сначала в режиме гомогенного горения, затем, при температуре примерно 800°С пламенное горение переходит в тление, т.е. становится гетерогенным. Так же происходит и с другими твердыми веществами.

Как горят жидкости в воздухе? Механизм горения жидкостей заключается в том, что сначала происходит ее испарение, и именно пары образуют горючую смесь с воздухом. То есть в этом случае также происходит гомогенное горение. горит не жидкая фаза, а пары жидкости

Механизм горения металла такой же, как и жидкостей, за исключением того, что металлу необходимо сначала расплавиться и после этого нагреться до высокой температуры, чтобы скорость испарения была достаточной для образования горючей среды. Некоторые металлы горят на их поверхности.

В гомогенном горении выделяют два режима: кинетическое и диффузионное горение.

Кинетическое горение – это горение предварительно перемешанной горючей смеси, т.е. однородной смеси. Скорость горения определяется только кинетикой окислительно-восстановительной реакции.

Диффузионное горение – это горение неоднородной смеси, когда горючее и окислитель предварительно не перемешаны, т.е. неоднородной. В этом случае, смешивание горючего и окислителя происходит во фронте пламени за счет диффузии. Для неорганизованного горения характерен именно диффузионный режим горения, большинство горючих материалов на пожаре могут гореть только в этом режиме. Однородные смеси, конечно, могут образовываться и при реальном пожаре, однако их образование скорее предшествует пожару или обеспечивает начальную стадию развития.

Принципиальным отличием этих видов горения заключается в том, что в однородной смеси молекулы горючего и окислителя уже находятся в непосредственной близости и готовы вступить в химическое взаимодействие, при диффузионном же горении эти молекулы сначала должны приблизится друг к другу за счет диффузии, и только после этого вступить во взаимодействие.

Этим обуславливается различие в скорости протекания процесса горения.

Полное время горения t г, складывается из длительности физиче-
ских и химических процессов:

t г = t ф + t х.

Кинетический режим горения характеризуется длительностью только химических процессов, т.е. t г » t х, поскольку в этом случае физических процессов подготовки (перемешивания) не требуется, т.е. t ф » 0.

Диффузионный режим горения, наоборот, зависит в основном от
скорости подготовки однородной горючей смеси (грубо говоря сближения молекул), В этом случае t ф >> t х, и поэтому последним можно пренебречь, т.е. длительность его определяется в основном скоростью протекания физических процессов.

Если t ф » t х, т.е. они соизмеримы, то горение протекает в так
называемой промежуточной области.

Для примера, представьте себе две газовые горелки(рис. 1.1): в одной из них в сопле имеются отверстия для доступа воздуха (а), в другой их нет (б). В первом случае воздух будет засасываться инжекцией в сопло, где он перемешивается в горючим газом, таким образом, образуется однородная горючая смесь, которая сгорает на выходе из сопла в кинетическом режиме . Во втором случае (б), воздух перемешивается с горючим газом в процессе горения за счет диффузии, в этом случае – горение диффузионное .

Рис. 1.1 Пример кинетического (а) и диффузионного (б) горения

Другой пример: в помещении происходит утечка газа. Газ постепенно перемешивается с воздухом, образуя однородную горючую смесь. И в случае появления после этого источника зажигания, происходит взрыв. Это и есть горение в кинетическом режиме.

Аналогично при горении жидкостей, например бензина. Если его налить в открытую емкость и поджечь, будет происходить диффузионное горение. Если же поместить эту емкость в закрытое помещение и подождать некоторое время, бензин частично испарится, перемешается с воздухом и образует тем самым однородную горючую смесь. При внесении источника зажигания, как вам известно, произойдет взрыв, это – кинетическое горение.

В каком режиме протекает горение на реальных пожарах? Конечно в основном в диффузионном. В некоторых случаях пожар может начаться и с кинетического горения, как в приведенных примерах, однако после выгорания однородной смеси, что происходит очень быстро, горение продолжится уже в диффузионном режиме.

При диффузионном горении, в случае недостатка кислорода воздуха, например при пожарах в закрытых помещениях, возможно неполное сгорание горючего с образованием продуктов неполного сгорания таких как СО – угарный газ. Все продукты неполного сгорания очень токсичны и представляют большую опасность на пожаре. В большинстве случаев именно они являются виновниками гибели людей.

Итак, основными видами горения являются гомогенное и гетерогенное. Визуальное отличие этих режимов – наличие пламени.

Гомогенное горение может протекать в двух режимах: диффузионном и кинетическом. Визуально, их отличие заключается в скорости горения.

Следует отметить, что выделяют еще один вид горения – горение взрывчатых веществ. Взрывчатые вещества включают в свой состав горючее и окислитель в твердой фазе. Поскольку и горючее и окислитель находятся в одинаковом агрегатном состоянии, такое горение – гомогенное.

На реальных пожарах, в основном, происходит пламенное горение. Пламя, как известно, выделяют как один из опасных факторов пожара. Что же такое пламя и какие процессы в нем протекают?

Различают гомогенное, гетерогенное и диффузионное горение. К гомогенному относится горение предварительно перемешанных газов. Примерами гомогенного горения являются процессы сгорания газов или паров, в которых окислителем является кислород воздуха: горение смесей водорода, смесей оксида углерода и углеводородов с воздухом. В практически важных случаях не всегда выполняется условие полного предварительного перемешивания. Поэтому всегда возможны комбинации гомогенного с другими видами горения.

Гомогенное горение может быть реализовано в двух режимах: ламинарном и турбулентном. Турбулентность ускоряет процесс горения за счет дробления фронта пламени на отдельные фрагменты и, соответственно, увеличения площади контакта реагирующих веществ при крупномасштабной турбулентности или ускорения процессов тепломассопереноса во фронте пламени при мелкомасштабной. Турбулентному горению присуща автомодельность: турбулентные вихри увеличивают скорость горения, что приводит к увеличению турбулентности.

При пожарах наиболее распространены процессы диффузионного горения. В них все реагирующие вещества находятся в газовой фазе, но предварительно не перемешаны. В случае горения жидкостей и твердых веществ процесс окисления горючего в газовой фазе происходит одновременно с процессом испарения жидкости (или разложения твердого материала) и с процессом смешивания. Простейшим примером диффузионного горения является горение природного газа в газовой горелке. На пожарах реализуется режим турбулентного диффузионного горения, когда скорость горения определяется скоростью турбулентного смешивания. При этом различают макросмешение и микросмешение. Процесс турбулентного смешения включает последовательное дробление газа на все более малые объемы и перемешивание их между собой.

Гетерогенное горение происходит на поверхности раздела фаз. При этом одно из реагирующих веществ находится в конденсированном состоянии, другое (обычно кислород воздуха) поступает за счет диффузии газовой фазы. Обязательным условием гетерогенного горения является очень высокая температура кипения (или разложения) конденсированной фазы. При несоблюдении этого условия горению предшествует испарение или разложение. От поверхности в зону горения поступает поток пара или газообразных продуктов разложения, и горение происходит в газовой фазе. Развитие такого горения осуществляется за счет теплового потока от факела пламени к поверхности материала, который обеспечивает дальнейшее испарение или разложение и поступление горючего в зону горения. В подобных ситуациях возникает смешанный случай, когда реакции горения частично протекают гетерогенно − на поверхности конденсированной фазы, частично гомогенно − в объеме газовой смеси.

Примером гетерогенного горения является горение каменного и древесного угля. При сгорании этих веществ протекают реакции двоякого рода. Некоторые сорта каменного угля выделяют при нагревании летучие компоненты. Сгоранию таких углей предшествует их частичное термическое разложение с выделением газообразных углеводородов и водорода, сгорающих в газовой фазе. Кроме того, при сгорании чистого углерода может образовываться оксид углерода СО, догорающий в объёме.

Горение газов

Для описания процессов горения обычно используется термин нормальная скорость пламени , который характеризует скорость обычного фронта пламени в неподвижной газовой смеси. В реальных условиях горения пламя всегда существует в движущихся потоках.

Поведение пламени в таких условиях подчиняется двум законам:

– первый из них устанавливает, что составляющая скорости газового потока v по нормали к фронту пламени, распространяющегося по непод-

вижной смеси, равна нормальной скорости распространения пламени и , деленной на cos :

v = u/ cos φ, (1.2)

где − угол между нормалью к поверхности пламени и направлением газового потока.

Этот закон применим только к плоскому пламени. Обобщение его на реальный случай с искривлением фронта пламени дает формулировку второго закона − закона площадей.

Предположим, что в газовом потоке, имеющем скорость v и поперечное сечение , стационарно расположен искривленный фронт пламени с общей поверхностью S . В каждой точке фронта пламени пламя распространяется по нормали к его поверхности со скоростью U .Тогда объём горючей смеси, сгорающей в единицу времени , составит

ω = U · S. (1.3)

С другой стороны, в соответствии с балансом исходного газа этот же объём равен

ω = v ∙ ε. (1.4)

Приравнивая левые части(1.2) и (1.3), получаем

v = U · S/ε. (1.5)

В системе отсчёта, в которой фронт пламени перемещается по неподвижной газовой смеси, соотношение (1.5) означает, что пламя распространяется относительно газа со скоростью v. Формула (1.5) является математическим выражением закона площадей, из которого следует важный вывод: при искривлении фронта пламени скорость горения вырастает пропорционально увеличению его поверхности. Поэтому неоднородное движение газа всегда интенсифицирует горение.

Из закона площадей следует, что турбулентность увеличивает скорость горения. На пожарах это выражается сильной интенсификацией процесса распространения пламени. Различают два вида турбулентного горения: горение однородной газовой смеси и микродиффузионное турбулентное горение. В свою очередь, при горении однородной смеси в режиме турбулентного горения возможны два случая: возникновение мелкомасштабной и крупномасштабной турбулентности. Такое разделение производится в зависимости от соотношения масштаба турбулентности и толщины фронта пламени. При масштабе турбулентности, меньшем толщины фронта пламени, ее относят к мелкомасштабной, при большем −
к крупномасштабной. Механизм действия мелкомасштабной турбулентности обусловлен интенсификацией процессов горения за счёт ускорения процессов тепломассопереноса в зоне пламени. Наибольшие скорости горения наблюдаются при крупномасштабной турбулентности. В этом случае возможны два механизма ускорения горения: поверхностный и объёмный.

Одним из видов горения газов является дефлаграционное горение . Состав горючих смесей может быть различным. В общем случае содержание горючего компонента может колебаться от нуля до ста процентов, однако, не все смеси горючего и окислителя способны распространять пламя. Распространение возможно лишь в определённом интервале концентраций. При зажигании смесей, состав которых выходит за эти пределы, реакция горения, инициированная зажигающим импульсом, затухает на небольшом расстоянии от места зажигания. Для смесей горючего и окислителя, находящихся в газообразном состоянии, существуют минимальная и максимальная концентрации горючего, которые ограничивают область горючих смесей. Эти концентрации называются соответственно нижним и верхним концентрационными пределами распространения пламени. Вне пределов распространение пламени по данной смеси невозможно. Рассмотрим причины, обусловливающие наличие предельных условий распространения пламени по газовым смесям. В начальный момент инициирования горения (искрой, накаленным телом или открытым пламенем) в горючей смеси возникает зона высокой температуры, из которой тепловой поток будет направлен в окружающее пространство. Часть тепла поступает в свежую (еще не сгоревшую) смесь, другая часть − в продукты горения. Если поток тепла в свежую смесь недостаточен для возбуждения в ней реакции горения, первоначальный очаг пламени затухает.

Таким образом, наличие пределов распространения пламени по газовым смесям объясняется теплопотерями из зоны реакции. Детонацией называется процесс превращения горючей смеси или взрывчатого вещества, сопровождающийся выделением теплоты и распространяющийся с постоянной скоростью, превышающей скорость распространения звука в данной смеси или веществе.

В отличие от дефлаграционного горения, где распространение пламени обусловлено относительно медленными процессами диффузии и теплопроводности, детонация представляет собой комплекс мощной ударной волны и следующей за её фронтом зоны химического превращения. Благодаря резкому повышению температуры и давления за фронтом ударной волны химическое превращение исходных веществ в продукты горения протекает чрезвычайно быстро в очень тонком слое, непосредственно прилегающем к фронту ударной волны (рис. 1.2).

Продукты Химической реакции

Рис. 1.2. Схема детонационной волны

Ударная волна сжимает и нагревает горючую смесь (или взрывчатое вещество), вызывая химическую реакцию, продукты которой сильно расширяются – происходит взрыв. Энергия, выделяющаяся в результате химического превращения, поддерживает существование ударной волны, не давая ей затухать. Скорость перемещения детонационной волны постоянна для каждой горючей смеси ивзрывчатого вещества и достигает
1000–3000 м/с в газовых смесях и 8000–9000 м/с – в конденсированных взрывчатых веществах (табл. 1.1).

Таблица 1.1

Скорость детонации некоторых горючих смесей
и взрывчатых веществ

Окончание табл. 1.1

Давление во фронте ударной волны при детонации газовых смесей достигает 1–5 МПа (10–50 атм.), а конденсированных веществ − 10 ГПа.
В газообразных горючих смесях распространение детонации возможно только при условиях, когда концентрация горючего газа (или паров горючей жидкости) находится в определенных пределах, зависящих от химической природы горючей смеси, давления и температуры. Например, в смеси водорода с кислородом при комнатной температуре и атмосферном давлении детонационная волна способна распространяться, если концентрация водорода находится в пределах от 20 до 90 % об.

Переход дефлаграционного горения в детонацию в газовоздушных смесях возможен в следующих случаях:

● при обогащении горючей смеси кислородом;

● при очень больших размерах газовых облаков;

● при наличии турбулизаторов горения.

В горючих облаках достаточно больших размеров неизбежен переход от дефлаграционного горения к детонации, при этом аналитическая оценка приводит к следующим критическим размерам облаков, при которых вероятность возникновения детонации высока: для водорода воздушных смесей − 70 м, для пропановоздушных − 3500 м, для метановоздушных − 5000 м. Турбулизация процесса горения газовых смесей с помощью различных препятствий по пути распространяющегося пламени приводит к существенному сокращению критических размеров газовых облаков, и возникающая в этом случае детонационная волна становится источником возбуждения детонации в неограниченном пространстве.


Похожая информация.


Гетерогенное горение - жидких и твердых горючих веществ в газообразном окислителе. Для гетерогенного горения жидких веществ большое значение имеет их испарения. Гетерогенное горение легкоиспаряющихся горючих веществ практически относится к гомогенному горению, т.к. такие горючие еще до воспламенения полностью или почти полностью успевают испариться. В технике большое значение имеет гетерогенное горение твёрдого топлива, главным образом углей, содержащих и некоторое количество органических веществ, которые при нагревании топлива разлагаются и выделяются в виде паров и газов. Термически неустойчивую часть топлива принято называть летучей, а - летучими. При медленном нагревании наблюдается четкая стадийность начала этапа горения - сначала летучих компонентов и их воспламенение, затем воспламенение и горение твердого, так называемого коксового остатка, который кроме углерода содержит минеральную часть топлива-золу.
Смотри также:
-
-
-
-

Энциклопедический словарь по металлургии. - М.: Интермет Инжиниринг . Главный редактор Н.П. Лякишев . 2000 .

Смотреть что такое "гетерогенное горение" в других словарях:

    гетерогенное горение - Горение жидких и тв. горючих вещ в в газообраз. окислителе. Для г. г. жидких вещ в большое значение имеет процесс их испарения. Г. г. легкоиспаряющихся горючих веш в практ. относится к гомогенному г., т.к. такие горючие веш ва еще до… … Справочник технического переводчика

    гетерогенное горение - heterogeninis degimas statusas T sritis chemija apibrėžtis Skysčio ar kietosios medžiagos degimas. atitikmenys: angl. heterogeneous combustion rus. гетерогенное горение … Chemijos terminų aiškinamasis žodynas

    гетерогенное горение - heterogeninis degimas statusas T sritis Energetika apibrėžtis Degimas, kai reaguojančiosios medžiagos yra skirtingos agregatinės būsenos ir reakcija vyksta jų skirtingų fazių sąlyčio paviršiuose. atitikmenys: angl. heterogeneous combustion vok.… … Aiškinamasis šiluminės ir branduolinės technikos terminų žodynas

    Горение - сложное, быстро протекающее химическое превращение, сопровождающееся выделением значительного количества тепла и обычно ярким свечением (пламенем). В большинстве случаев основу Г. составляют экзотермические окислительные реакции вещества … Большая советская энциклопедия

    Сложное, быстрое химическое превращение вещества, например, топлива, сопровождающееся выделением значительного количества тепла и ярким свечением (пламенем). В большинстве случаев основу горения составляют экзотермические… …

    Горение (́реакция) - (a. combustion, burning; н. Brennen, Verbrennung; ф. combustion; и. combustion) быстро протекающая реакция окисления, сопровождаемая выделением значит. кол ва тепла; обычно сопровождается ярким свечением (пламенем). В большинстве случаев… … Геологическая энциклопедия

    Горение - экзотермическая реакция окисления горючего вещества, сопровождающаяся, как правило, видимым электромагнитным излучением и выделением дыма. В основе Г. лежит взаимодействие горючего вещества с окислителем, чаще всего кислородом воздуха. Различают… … Российская энциклопедия по охране труда

    ГОРЕНИЕ - сложная хим. реакция, протекающая в условиях прогрессивного самоускорения, связанного с накоплением в системе теплоты или катализирующих продуктов реакции. При Г. могут достигаться высокие (до неск. тыс. К) темп ры, причём часто возникает… … Физическая энциклопедия

    ГОРЕНИЕ - сложное, быстро протекающее хим. превращение, сопровождающееся выделением теплоты. Обычно протекает в системах, содержащих горючее (напр., уголь, природный газ) и окислитель (кислород, воздух и др.). Может быть г о м о г е н н ы м (в заранее… … Большой энциклопедический политехнический словарь

    Горение газов и парообразных горючих веществ в газообразном окислителе. Для начала горения необходим начальный энергетический импульс. Различают само и вынужденное воспламенение или зажигание; нормально распространяющееся … Энциклопедический словарь по металлургии

Книги

  • Гетерогенное горение частиц твердых топлив , Гремячкин Виктор Михайлович. Рассмотрены теоретические основы процессов горения частиц твердых топлив, к которым относят не только традиционные углеводородные топлива, содержащие углерод, нои частицы металлов, которые…

Газов и парообразных горючих веществ в газообразном окислителе. Для начала горения необходим начальный энергетический импульс. Различают само- и вынужденное воспламенение или зажигание; нормально распространяющееся горение или дефлаграцию (ведущий процесс-передача тепла теплопроводностью) и детонацию (с поджиганием ударной волной). Нормальное горение подразделяется на ламинарное (струйчатое) и турбулентное (вихревое). Различают горение при истечении заранее перемешанной и горение при раздельном истечении горючего газа и окислителя, когда определяется перемешиванием (диффузией) двух потоков.
Смотри также:
-
-
-
-

Энциклопедический словарь по металлургии. - М.: Интермет Инжиниринг . Главный редактор Н.П. Лякишев . 2000 .

Смотреть что такое "гомогенное горение" в других словарях:

    гомогенное горение - Горение газов и парообразных горючих вещ в в газообраз. окислителе. Для нач. горения необходим нач. энергетич. импульс. Различают само и вынужд. воспламенение или зажигание; норм. распространяющ. горение или дефлаграцию (ведущий процесс передача… …

    гомогенное горение - homogeninis degimas statusas T sritis chemija apibrėžtis Dujų degimas. atitikmenys: angl. homogeneous combustion rus. гомогенное горение … Chemijos terminų aiškinamasis žodynas

    гомогенное горение - homogeninis degimas statusas T sritis Energetika apibrėžtis Degimas, kai reaguojančiosios medžiagos yra vienodos agregatinės būsenos, vienodai pasiskirsčiusios ir reakcijos vyksta visame jų tūryje. atitikmenys: angl. homogeneous combustion vok.… … Aiškinamasis šiluminės ir branduolinės technikos terminų žodynas

    локально гомогенное горение - — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN locally homogeneous firingLHF … Справочник технического переводчика

    Горение - сложное, быстро протекающее химическое превращение, сопровождающееся выделением значительного количества тепла и обычно ярким свечением (пламенем). В большинстве случаев основу Г. составляют экзотермические окислительные реакции вещества … Большая советская энциклопедия

    Сложное, быстрое химическое превращение вещества, например, топлива, сопровождающееся выделением значительного количества тепла и ярким свечением (пламенем). В большинстве случаев основу горения составляют экзотермические… …

    Горение (́реакция) - (a. combustion, burning; н. Brennen, Verbrennung; ф. combustion; и. combustion) быстро протекающая реакция окисления, сопровождаемая выделением значит. кол ва тепла; обычно сопровождается ярким свечением (пламенем). В большинстве случаев… … Геологическая энциклопедия

    ГОРЕНИЕ - сложная хим. реакция, протекающая в условиях прогрессивного самоускорения, связанного с накоплением в системе теплоты или катализирующих продуктов реакции. При Г. могут достигаться высокие (до неск. тыс. К) темп ры, причём часто возникает… … Физическая энциклопедия

    Горение - экзотермическая реакция окисления горючего вещества, сопровождающаяся, как правило, видимым электромагнитным излучением и выделением дыма. В основе Г. лежит взаимодействие горючего вещества с окислителем, чаще всего кислородом воздуха. Различают… … Российская энциклопедия по охране труда

    Горение жидких и твердых горючих веществ в газообразном окислителе. Для гетерогенного горения жидких веществ большое значение имеет процесс их испарения. Гетерогенное горение легкоиспаряющихся горючих веществ… … Энциклопедический словарь по металлургии