Что позволяет определить закон джоуля ленца. Закон джоуля ленца

Закон Джоуля-Ленца определяет количество теплоты, выделяющейся в проводнике, обладающим сопротивлением за время t, при прохождении через него электрического тока.

Q = a*I*2R*t, где
Q - колическтво выделяемой теплоты (в Джоулях)
a - коэффициент пропорциональности
I - сила тока (в Амперах)
R - Сопротивление проводника (в Омах)
t - Время прохождения (в секундах)

Закон Джоуля-Ленца объясняет, что электрический ток - это заряд, который перемещается под действием электрического поля. При этом поле совершает работу, а ток обладает мощностью и выделяется энергия. Когда эта энергия проходит по неподвижному металлическому проводнику, то она становится тепловой, так как направлена на нагревание проводника.

В дифференциальной форме закон Джоуля-Ленца выражается как объемная плотность тепловой мощности тока в проводнике будет равна произведению удельной электрической проводимости на квадрат напряженности электрического поля.

Применение закона Джоуля-Ленца

Лампы накаливания были придуманы в 1873 году русским инженером Лодыгиным. В лампах накаливания, как и в электронагревательных приборах, применяется закон Джоуля-Ленца. В них используют нагревательный элемент, который является проводником с высоким сопротивлением. За счет этого элемента можно добиться локализованного выделения тепла на участке. Выделение тепла будет появляться при повышении сопротивления, увеличении длины проводника, выбором определенного сплава.

Одной из областей применения закона Джоуля-Ленца является снижение потерь энергии.
Тепловое действие силы тока ведет к потерям энергии. При передаче электроэнергии, передаваемая мощность линейно зависит от напряжения и силы тока, а сила нагрева зависит от силы тока квадратично, поэтому если повышать напряжение, при этом понижая силу тока перед подачей электроэнергии, то это будет более выгодно. Но повышение напряжения ведет к снижению электробезопасности. Для повышения уровня электробезопасности повышают сопротивление нагрузки соответственно повышению напряжения в сети.

Также закон Джоуля-Ленца влияет на выбор проводов для цепей. При неправильном подборе проводов возможен сильный нагрев проводника, а так же его . Это происходит когда сила тока превышает предельно допустимые значения и выделяется слишком много энергии. При правильном подборе проводов для стоит следовать нормативным документам.

Источники:

  • Физическая энциклопедия

Между силой тока и напряжением существует прямо пропорциональная зависимость, описанная законом Ома. Этот закон определяет связь силы тока, напряжения и сопротивления на участке электрической цепи.

Инструкция

Вспомните, ток и напряжение.
- Электрический ток - это упорядоченное течение заряженных частиц (электронов). Для количественного определения используется величина I, называемая силой тока.
- Напряжение U - это разность потенциалов на концах участка электрической цепи. Именно это различие заставляет двигаться электроны, подобно потоку жидкости.

Сила тока измеряется в амперах. В электрических цепях силу тока определяют прибором амперметр. Единицей напряжения является , измерить напряжение в цепи можно с помощью вольтметра. Соберите простейшую электрическую цепь из источника тока, резистора, амперметра и вольтметра.

При замыкании цепи и прохождении по ней тока запишите показания приборов. Измените напряжение на концах сопротивления. Вы увидите, что показания амперметра будут расти с увеличением напряжения и наоборот. Такой опыт демонстрирует прямо пропорциональную зависимость между силой тока и напряжением.

Энциклопедичный YouTube

    1 / 3

    Урок 254. Закон Джоуля-Ленца. Работа и мощность электрического тока

    Закон Джоуля-Ленца. Часть 1

    Урок 255. Задачи на работу и мощность электрического тока

    Субтитры

Определения

В словесной формулировке звучит следующим образом

Мощность тепла, выделяемого в единице объёма среды при протекании постоянного электрического тока, пропорциональна произведению плотности электрического тока на величину напряженности электрического поля

Математически может быть выражен в следующей форме:

w = j → ⋅ E → = σ E 2 {\displaystyle w={\vec {j}}\cdot {\vec {E}}=\sigma E^{2}}

где w {\displaystyle w} - мощность выделения тепла в единице объёма, j → {\displaystyle {\vec {j}}} - плотность электрического тока , E → {\displaystyle {\vec {E}}} - напряжённость электрического поля , σ - проводимость среды, а точкой обозначено скалярное произведение.

Закон также может быть сформулирован в интегральной форме для случая протекания токов в тонких проводах :

В интегральной форме этот закон имеет вид

d Q = I 2 R d t {\displaystyle dQ=I^{2}Rdt} Q = ∫ t 1 t 2 I 2 R d t {\displaystyle Q=\int \limits _{t_{1}}^{t_{2}}I^{2}Rdt}

где dQ - количество теплоты, выделяемое за промежуток времени dt , I - сила тока, R - сопротивление, Q - полное количество теплоты, выделенное за промежуток времени от t 1 до t 2 . В случае постоянных силы тока и сопротивления:

Q = I 2 R t {\displaystyle Q=I^{2}Rt}

А применяя закон Ома можно получить следующие эквивалентные формулы:

Q = V 2 t / R = I V t {\displaystyle Q=V^{2}t/R\ =IVt}

Практическое значение

Снижение потерь энергии

При передаче электроэнергии тепловое действие тока в проводах является нежелательным, поскольку ведёт к потерям энергии. Подводящие провода и нагрузка соединены последовательно , значит ток в сети I {\displaystyle I} на проводах и нагрузке одинаков. Мощность нагрузки и сопротивление проводов не должны зависеть от выбора напряжения источника. Выделяемая на проводах и на нагрузке мощность определяется следующими формулами

Q w = R w ⋅ I 2 {\displaystyle Q_{w}=R_{w}\cdot I^{2}} Q c = V c ⋅ I {\displaystyle Q_{c}=V_{c}\cdot I}

Откуда следует, что Q w = R w ⋅ Q c 2 / V c 2 {\displaystyle Q_{w}=R_{w}\cdot Q_{c}^{2}/V_{c}^{2}} . Так как в каждом конкретном случае мощность нагрузки и сопротивление проводов остаются неизменными и выражение R w ⋅ Q c 2 {\displaystyle R_{w}\cdot Q_{c}^{2}} является константой, то тепло выделяемое на проводе обратно пропорционально квадрату напряжения на потребителе. Повышая напряжение мы снижаем тепловые потери в проводах. Это, однако, снижает электробезопасность линий электропередачи .

Выбор проводов для цепей

Тепло, выделяемое проводником с током, в той или иной степени выделяется в окружающую среду. В случае, если сила тока в выбранном проводнике превысит некоторое предельно допустимое значение, возможен столь сильный нагрев, что проводник может спровоцировать возгорание находящихся рядом с ним объектов или расплавиться сам. Как правило, при выборе проводов, предназначенных для сборки электрических цепей, достаточно следовать принятым нормативным документам, которые регламентируют выбор сечения проводников.

Электронагревательные приборы

Если сила тока одна и та же на всём протяжении электрической цепи, то в любом выбранном участке будет выделять тепла тем больше, чем выше сопротивление данного участка.

За счёт сознательного увеличения сопротивления участка цепи можно добиться локализованного выделения тепла в этом участке. По этому принципу работают электронагревательные приборы . В них используется нагревательный элемент - проводник с высоким сопротивлением. Повышение сопротивления достигается (совместно или по отдельности) выбором сплава с высоким удельным сопротивлением (например, нихром , константан), увеличением длины проводника и уменьшением его поперечного сечения. Подводящие провода имеют обычное низкое сопротивление и поэтому их нагрев, как правило, незаметен.

Плавкие предохранители

Для защиты электрических цепей от протекания чрезмерно больших токов используется отрезок проводника со специальными характеристиками. Это проводник относительно малого сечения и из такого сплава, что при допустимых токах нагрев проводника не перегревает его, а при чрезмерно больших перегрев проводника столь значителен, что проводник расплавляется и размыкает цепь.

В результате опытов было установлено, что количество тепла выделяемого током при прохождении по проводнику, зависит от сопротивления самого проводника, тока и времени его прохождения.

Этот физический закон был впервые установлен в 1841 году английским физиком Джоулем, а несколько позднее (в 1844 году) независимо от него русским академиком Эмилем Христиановичем Ленцем (1804 - 1865).

Количественные соотношения, имеющие место при нагревании проводника током, называются законом Джоуля-Ленца.

Выше было установлено:

Так как 1 кал = 0,472 кГм, то

Таким образом,

1 Дж = 0,24 кал.

Энергия электрического тока определяется по формуле

A = I 2 × r × t Дж.

Так как энергия тока идет на нагрев, то количество тепла, выделяемое током в проводнике, равно:

Q = 0,24 × I 2 × r × t кал.

Эта формула, выражающая закон Джоуля-Ленца, показывает и дает определение закону, что количество тепла в калориях, выделяемое током при прохождении по проводнику, равно коэффициенту 0,24, умноженному на квадрат тока в амперах, сопротивление в омах и время в секундах.

Видео - "Закон Джоуля-Ленца, физика 8 класс":

Пример 1. Определить, сколько тепла выделит ток в 6 А, проходя по проводнику сопротивлением 2 Ом, в течение 3 минут.

Q = 0,24 × I 2 × r × t = 0,24 × 36 × 2 × 180 = 3110,4 кал.

Формулу закона Джоуля-Ленца можно написать так:

Q = 0,24 × I × I × r × t ,

а так как I × r = U , то можно написать:

Q = 0,24 × I × U × t кал.


Пример 2. Электрическая плитка включена в сеть напряжением 120 В. Ток, протекающий по спирали плитки, 5 А. Требуется определить, сколько тепла выделит ток за 2 часа.

Q = 0,24 × I × U × t = 0,24 × 5 × 120 × 7200 = 1 036 800 кал = 1036,8 ккал.

Видео - "Нагревание проводников электрическим током":

Э. Х. Ленц обобщил опыты электромагнитной индукции, изложив это обобщение в виде "правила Ленца". В своих трудах по теории электрических машин Ленц изучил явление "реакции якоря" в машинах постоянного тока, доказал принцип обратимости электрических машин. Ленц, работая с Якоби, исследовал силу притяжения электромагнитов, установил зависимость магнитного момента от намагничивающей силы.


12 (24) февраля 1804 - 29 января (10 февраля) 1865 (60 лет)

Ленц был членом Петербургской Академии Наук и ректором Петербургского университета.

Одновременно, но независимо друг от друга открывших его в 1840г) - закон, дающий количественную оценку теплового действия электрического тока.

При протекании тока по проводнику происходит превращение электрической энергии в тепловую, причём количество выделенного тепла будет равно работе электрических сил:

Q = W

Закон Джоуля - Ленца: количество тепла, выделяемого в проводнике, прямо пропорционально квадрату силы тока, сопротивлению проводника и времени его прохождения.

Практическое значение

Снижение потерь энергии

При передаче электроэнергии тепловое действие тока является нежелательным, поскольку ведёт к потерям энергии. Поскольку передаваемая мощность линейно зависит как от напряжения, так и от силы тока, а мощность нагрева зависит от силы тока квадратично, то выгодно повышать напряжение перед передачей электроэнергии , понижая в результате силу тока. Повышение напряжения снижает электробезопасность линий электропередачи . В случае применения высокого напряжения в цепи для сохранения прежней мощности потребителя придется увеличить сопротивление потребителя (квадратичная зависимость. 10В, 1 Ом = 20В, 4 Ом). Подводящие провода и потребитель соединены последовательно. Сопротивление проводов (R w ) постоянное. А вот сопротивление потребителя (R c ) растет при выборе более высокого напряжения в сети. Также растет соотношение сопротивления потребителя и сопротивления проводов. При последовательном включении сопротивлений (провод - потребитель - провод) распределение выделяемой мощности (Q ) пропорционально сопротивлению подключенных сопротивлений. ; ; ; ток в сети для всех сопротивлений постоянен. Следовательно имеем соотношение Q c / Q w = R c / R w ; Q c и R w это константы (для каждой конкретной задачи). Определим, что . Следовательно, мощность выделяемая на проводах обратно пропорциональна сопротивлению потребителя, то есть уменьшается с ростом напряжения. так как . (Q c - константа); Объеденим две последние формулы и выведем, что ; для каждой конкретной задачи - это константа. Следовательно, тепло выделяемое на проводе обратно пропорционально квадрату напряжения на потребителе.Ток проходит равномерно.

Выбор проводов для цепей

Тепло, выделяемое проводником с током, в той или иной степени выделяется в окружающую среду. В случае, если сила тока в выбранном проводнике превысит некоторое предельно допустимое значение, возможен столь сильный нагрев, что проводник может спровоцировать возгорание находящихся рядом с ним объектов или расплавиться сам. Как правило, при сборке электрических цепей достаточно следовать принятым нормативным документам, которые регламентируют, в частности, выбор сечения проводников.

Электронагревательные приборы

Если сила тока одна и та же на всём протяжении электрической цепи, то в любом выбранном участке будет выделять тепла тем больше, чем выше сопротивление данного участка.

За счёт сознательного увеличения сопротивления участка цепи можно добиться локализованного выделения тепла в этом участке. По этому принципу работают электронагревательные приборы . В них используется нагревательный элемент - проводник с высоким сопротивлением. Повышение сопротивления достигается (совместно или по отдельности) выбором сплава с высоким удельным сопротивлением (например, нихром , константан), увеличением длины проводника и уменьшением его поперечного сечения. Подводящие провода имеют обычное низкое сопротивление и поэтому их нагрев, как правило, незаметен.

Плавкие предохранители

Для защиты электрических цепей от протекания чрезмерно больших токов используется отрезок проводника со специальными характеристиками. Это проводник относительно малого сечения и из такого сплава, что при допустимых токах нагрев проводника не перегревает его, а при чрезмерно больших перегрев проводника столь значителен, что проводник расплавляется и размыкает цепь.


Wikimedia Foundation . 2010 .

Смотреть что такое "Закон Джоуля - Ленца" в других словарях:

    Коппа описывает теплоёмкость сложных (т. е. состоящих из нескольких химических элементов) кристаллических тел. Основан на законе Дюлонга Пти. Каждый атом в молекуле имеет три колебательных степени свободы, и он обладает энергией. Соответственно … Википедия

    ЗАКОН ДЖОУЛЯ - закон, согласно которому внутренняя энергия определённой массы (см.) зависит только от температуры и не зависит от его объёма (плотности) … Большая политехническая энциклопедия

    закон джоуля - Joule s law *Joulesches Gesetz – внутрішня енергія ідеального газу залежить тільки від температури … Гірничий енциклопедичний словник

    закон Джоуля - Džaulio dėsnis statusas T sritis Standartizacija ir metrologija apibrėžtis Dėsnis, formuluojamas taip: laidininke, kai juo teka elektros srovė, išsiskiriantis šilumos kiekis Q yra proporcingas srovės kvadratui I², laidininko varžai R ir srovės… … Penkiakalbis aiškinamasis metrologijos terminų žodynas

    Закон Джоуля - закон термодинамики, согласно которому внутренняя энергия идеального газа является функцией одной лишь температуры и не зависит от объёма. Установлен экспериментально Дж. П. Джоулем (1818 1889) в 1845 г. Закон является следствием второго начала… … Концепции современного естествознания. Словарь основных терминов

    Описывает теплоёмкость сложных (т.е. состоящих из нескольких химических элементов) кристаллических тел. Основан на законе Дюлонга Пти. Каждый атом в молекуле имеет три колебательных степени свободы, и он обладает энергией. Соответственно,… … Википедия

    Описывает теплоемкость сложных (т.е. состоящих из нескольких химических элементов) кристаллических тел. Основан на законе Дюлонга Пти. Каждый атом в молекуле имеет три колебательных степени свободы, и он обладает энергией. Соответственно,… … Википедия - ЗАКОН СОХРАНЕНИЯ ЭНЕРГИИ И МАТЕРИИ, два тесно связанных между собой н очень близких по содержанию закона, лежащих в основании всего точного естествознания. Эти законы имеют чисто количественный характер и являются законами экспериментальными.… … Большая медицинская энциклопедия

Рассмотрим однородный проводник, к концам которого приложено напряжение U. За время dt через сечение проводника переносится заряд dq =Idt . Так как ток представляет собой перемещение заряда dq под действием электрического поля, то, по работа тока равна

dA=Udq =IU dt (13.28)

Если сопротивление проводника R, то, используя закон Ома, получим

Мощность тока

(13.30)

Если ток проходит по неподвижному металлическому проводнику, то вся работа тока идёт на его нагревание, и, по закону сохранения энергии,

(13.31)

Таким образом, используя выражение (13.28) и (13.31) , получим

(13.32)

Выражение представляет собой закон Джоуля-Ленца , экспериментально установленный независимо друг от друга Джоулем и Ленцом.

§ 13.7 Законы Ома и Джоуля-Ленца в дифференциальной форме.

Подставив выражение для сопротивления в закон Ома, получим

(13.33)

где величина , обратная удельному сопротивлению, называется удельной электрической проводимостью вещества проводника. Её единица – сименс на метр (См/м).

Учитывая, что
- напряжённость электрического поля в проводнике,
- плотность тока, формулу можно записать в виде

j = γE (13.34)

Закон Джоуля-Ленца в дифференциальноё форме

Выделим в проводнике элементарный цилиндрический объём dV=dSdℓ (ось цилиндра совпадает с направлением тока(рис.13.9)), сопротивление которого
. По закону Джоуля-Ленца, за время в этом объёме выделится теплота

(13.35)

Количество теплоты, выделившееся за единицу времени в единице объёма, называется удельной тепловой мощностью тока . Она равна

ω= ρ∙j 2 (13.36)

Используя дифференциальную форму закона Ома (j = γE) и соотношение , получим ω= j∙E=γ∙E 2 (13.37)

Примеры решения задач

Пример. Сила тока в проводнике равномерно растёт от I 0 =0 до I max =3А за время τ=6с. Определите заряд Q , прошедший по проводнику .

Дано: I 0 =0; I max =3А; τ=6с.

Найти: Q .

Решение. Заряд dQ, проходящий через поперечное сечение проводника за время dt,

По условию задачи сила тока растёт равномерно, т.е. I=kt , где коэффициент пропорциональности

.

Тогда можно записать

Проинтегрировав (1) и подставив выражение для k, найдём искомый заряд, прошедший по проводнику:

Ответ : Q=9 Кл.

Пример. По железному проводнику (ρ =7,87 г/см 3 , М=56∙10 -3 кг/моль) сечением S =0,5 мм 2 течёт ток I =0,1 А. определите среднюю скорость упорядоченного (направленного) движения электронов, считая, что число свободных электронов в единице объёма проводника равно числу атомов n " в единице объёма проводника

Дано: ρ=7,87 г/см 3 ,= 7,87∙10 3 кг/м 3 ; М=56∙10 -3 кг/моль; I=0,1A; S=0,5 мм 2 =0,5 10 -6 м 2 .

Найти: .

Решение . Плотность тока в проводнике

j=ne,

где - средняя скорость упорядоченного движения электронов в проводнике;n - концентрация электронов (число электронов в единице объёма); e=1,6∙10 -19 Кл – заряд электрона.

Согласно условию задачи,

(2)

(учли, что
, где – масса проводника; М – его молярная масса;N A = 6,02∙10 23 моль -1 – постоянная Авогадро;
- плотность железа).

Учитывая формулу (2) и то, что плотность тока
, выражение (1) можно записать в виде

,

Откуда искомая скорость упорядоченного движения электронов

Ответ: =14,8 мкм/с.

Пример. Сопротивление однородной проволоки R =36 Ом. Определите, на сколько равных отрезков разрезали проволоку, если после их параллельного соединения сопротивление оказалось равным R 1 =1Ом.

Дано R =36 Ом; R 1 =1 Ом .

Найти: N.

Решение. Неразрезанную проволоку можно представить как N последовательно соединённых сопротивлений. Тогда

где r – сопротивление каждого отрезка.

В случае параллельного соединения N отрезков проволок

или
(2)

Из выражений (1) и (2) найдём искомое число отрезков

Ответ: N=6

Пример. Определите плотность тока в медной проволоке длиной ℓ=100 м, если разность потенциалов на её концах φ 1 2 =10В. Удельное сопротивление меди ρ =17 нОм∙м.

Дано ℓ=100 м; φ 1 2 =10В; ρ =17 нОм∙м=1,7∙10 -8 Ом∙м .

Найти: j.

Решение. Согласно закону Ома в дифференциальной форме,

где
- удельная электрическая проводимость проводника;
- напряжённость электрического поля внутри однородного проводника, выраженная через разность потенциалов на концах проводника и его длину.

Подставив записанные формулы в выражение (1), найдём искомую плотность тока

Ответ: j=5,88 МА/м 2 .

Пример. Через лампу накаливания течёт ток I =1А, Температура вольфрамовой нити диаметром d 1 =0,2 мм равна 2000ºС. Ток подводится медными проводами сечением S 2 =5мм 2 . Определите напряжённость электростатического поля: 1) в вольфраме; 2) в меди. Удельное сопротивление вольфрама при 0ºС ρ 0 =55 нОм∙ м, его температурный коэффициент сопротивления α 1 =0,0045 град -1 , удельное сопротивление меди ρ 2 =17нОм∙ м.

Дано: I =1А; d 1 =0,2 мм=2∙10 -4 м; Т= 2000ºС; S 2 =5мм 2 =5∙10 -6 м 2 ; ρ 0 =55 нОм∙ м= 5,5∙10 -8 Ом∙м: α 1 =0,0045ºС -1 ; ρ 2 =17нОм∙ м=1,7∙10 -8 Ом∙м .

Найти: Е 1 ; Е 2 .

Решение. Согласно закону Ома в дифференциальной форме, плотность тока

(1)

где
- удельная электрическая проводимость проводника; Е – напряжённость электрического поля.

Удельное сопротивление вольфрама изменяется с температурой по линейному закону:

ρ=ρ 0 (1+αt). (2)

Плотность тока в вольфраме

(3)

Подставив выражение (2) и (3) в формулу (1) , найдём искомую напряжённость электростатического поля в вольфраме

.

Напряжённость электростатического поля в меди

(учли, что
).

Ответ: 1) Е 1 =17,5 В/м; 2) Е 2 =3,4 мВ/м.

Пример. По проводнику сопротивлением R =10Ом течёт ток, сила тока возрастает при этом линейно. Количество теплоты Q , выделившееся в проводнике за время τ =10с, равно 300 Дж. Определите заряд q , прошедший за это время по проводнику, если в начальный м омент времени сила тока в проводнике равна нулю.

Дано: R =10 Ом; τ=10с; Q =300Дж; I 0 =0.

Найти: q.

Решение. Из условия равномерности возрастания силы тока (при I 0 =0) следует, что I=kt, где k – коэффициент пропорциональности. Учитывая, что
, можем записать

dq=Idt=ktdt. (1)

Проинтегрируем выражение (1), тогда

(2)

Для нахождения коэффициента k запишем закон Джоуля-Ленца для бесконечного малого промежутка времени dt:

Проинтегрировав это выражение от0 до, получим количество теплоты, заданное в условии задачи:

,

Откуда найдём k:

. (3)

Подставив формулу (3) в выражение (2), определим искомый заряд

Ответ: q=15 Кл.

Пример. Определите плотность электрического тока в медном проводе (удельное сопротивление ρ=17нОм∙м), если удельная тепловая мощность тока ω=1,7Дж/(м 3 ∙с)..

Дано: ρ=17нОм∙м=17∙10 -9 Ом∙м; ω=1,7Дж/(м 3 ∙с).

Найти: j.

Решение. Согласно законам Джоуля-Ленца и Ома в дифференциальной форме,

(1)

, (2)

где γ и ρ – соответственно удельные и сопротивление проводника. Из закона (2) получим, что Е = ρj. Подставив это выражение в (1), найдём искомую плотность тока:

.

Ответ : j=10 кА/м 3 .

Пример. Определите внутреннее сопротивление источника тока, если во внешней цепи при сила тока I 1 =4А развивается мощность Р 1 =10 Вт, а при силе тока I 2 =6А – мощность Р 2 =12 Вт.

Дано: I 1 =4А; Р 1 =10 Вт; I 2 =6А; Р 2 =12 Вт.

Найти: r.

Решение. Мощность, развиваемая током,

и
(1)

где R 1 и R 2 – сопротивления внешней цепи.

Согласно закону Ома для замкнутой цепи,

;
,

где ε- ЭДС источника. Решив эти два уравнения относительно r, получим

(2)

Ответ : r=0,25 Ом.

Пример . В цепь, состоящую из источника ЭДС и резистора сопротивлением R =10Ом, включают вольтметр, сначала параллельно, а затем последовательно резистору, причём показания вольтметра одинаковы. Определите внутреннее сопротивление r источника ЭДС, если сопротивление вольтметра R V =500 Ом.

Дано: R =10 Ом; R V =500 Ом; U 1 = U 2 .

Найти: r.

Решение. Согласно условию задачи, вольтметр один раз подключают к резистору параллельно (рис.а), второй – последовательно (рис. б), причём его показания одинаковы.