Противоинсультная диета и другие способы предотвращения удара.

Методы предотвращения негативных явлений гидравлического удара и его использование

Резкое увеличение давления, сопровождающее гидравлический удар - явление крайне негативное, т.к. гидравлический удар может разрушить трубопровод или какие-либо элементы гидравлических машин, испытывающие эффекты гидравлического удара. По этой причине разрабатываются методы предотвращения гидравлических ударов или уменьшить его негативное влияние. Поскольку мощность гидравлического удара напрямую зависит от массы движущийся жидкости, то для предотвращения гидравлического удара следует максимально уменьшить массу жидкости, которая будет участвовать в гидравлическом ударе. Для этого необходимо запорную арматуру монтировать в непосредственной близости к резервуару. В качестве меры уменьшения негативных последствий гидравлического удара используют замену прямого гидравлического удара на непрямой. Для этого достаточно запорную арматуру на напорных трубопроводах сделать медленно закрывающейся, что позволит уменьшить силу удара. Другой мерой борьбы с явлением гидравлического удара является установка на напорных линиях, работающих в условиях циклической нагрузки специальных компенсаторов с воздушной подушкой, которая принимает на себя удар.

Общие сведения о противоударных устройствах

Для предупреждения гидравлических ударов и защиты от них разработаны надёжные противоударные приспособления, а для водоводов большого диаметра - комплекс противоударных мероприятий. Этот комплекс включает также воздушные клапаны для впуска воздуха или воды в местах возможных разрывов сплошности потока, обратные клапаны на наклонных участках для расчленения потока и устройства для пропуска воды через насос в обратном направлении после его выключения.

На водоводах коммунального хозяйства и крупных промышленных и сельскохозяйственных объектах применяются гасители гидравлических ударов системы УкрВОДГЕО, воздушно-гидравлические колпаки и другие приборы.

Наряду с эффективными противоударными мероприятиями в технической литературе до сих пор встречаютя рекомендации по использованию в качестве противоударных приборов пружинных и рычажно-грузовых клапанов. Эти клапаны хорошо работают на паровых котлах, где давление поднимается медленно, но на водоводах они работают неудовлетворительно. Это объясняется высокой инерционностью рычажно-грузовых клапанов и необходимостью точного расчёта на заданное давление пружинных клапанов. При изменении давления последние или протекают, или не гасят гидравлические удары.

Анализ различных противоударных устройств и мероприятий с точки зрения применимости их для напорных водоводов небольших и средних систем водоснабжения показал, что наиболее целесообразны воздушно-гидравлические колпаки с устройствами для сохранения в них воздуха, а также противоударные клапаны-гасители систем ЛИИЖТа (Ленинградский институт инженеров железнодорожного транспорта), разрывные мембраны.

Воздушно-гидравлические колпаки

Воздушно-гидравлические колпаки - старейшее средство для предохранения от гидравлических ударов. Колпаки успешно гасят гидравлические удары, возникающие от любых причин, и не допускают вакуума в месте образования возмущения потока.

Колпаки или котлы состоят из стальных цилиндрических сосудов, заполненных в верхней части воздухом (примерно на высоты при статическом давлении). Колпаки устанавливаются вертикально на патрубок трубопровода. При гидравлическом ударе и повышении давления в линии часть воды поступает из трубопровода в колпак и сжимает находящийся там воздух, при этом сила удара ослабевает за счёт амортизирующих свойств воздуха. При понижении давления в трубопроводе воздух расширяется и часть воды из колпака вытекает в трубопровод, заполняя возможные разрывы сплошности и тем самым снижая величину последующего повышения давления. Таким образом, воздух в колпаке служит упругим элементом, компенсирующим изменение объёма жидкости в трубопроводе при гидравлическом ударе.

Резкое увеличение давления, сопровождающее гидравлический удар - явление крайне негативное, т.к. гидравлический удар может разрушить трубопровод или какие-либо элементы гидравлических машин, испытывающие эффекты гидравлического удара. По этой причине разрабатываются методы предотвращения гидравлических ударов или уменьшения их негативного влияния. Поскольку мощность гидравлического удара напрямую зависит от массы движущийся жидкости, то для предотвращения гидравлического удара следует максимально уменьшить массу жидкости, которая будет участвовать в гидравлическом ударе. Для этого необходимо запорную арматуру монтировать в непосредственной близости к резервуару. В качестве меры уменьшения негативных последствий гидравлического удара используют замену прямого гидравлического удара на непрямой. Для этого достаточно запорную арматуру на напорных трубопроводах сделать медленно закрывающейся, что позволит уменьшить силу удара. Для борьбы с гидравлическим ударом применимы только те случаи увеличения времени закрытия, которые приводят к неполному удару, т.е. у которых t 3 > ф 0 . Снижение ударного давления путем создания условий неполного удара широко используется регламентированием времени закрытия задвижек, пуска мощных насосов и т.д.

Если по условиям эксплуатации или иным причинам снизить ударное давление за счет неполного удара нельзя, то приходится применять дорогие и мощные демпфирующие устройства и иные методы.

Другой мерой борьбы с явлением гидравлического удара является установка на напорных линиях, работающих в условиях циклической нагрузки, специальных компенсаторов с воздушной подушкой, которая принимает на себя удар.

Исходя из формулы Жуковского (определяющей увеличение давления при гидроударе) и величин, от которых зависит скорость распространения ударной волны, для ослабления силы этого явления или его полного предотвращения можно уменьшить скорость движения жидкости в трубопроводе, увеличив его диаметр.

Борьба с гидравлическим ударом:

1. уменьшение фазы удара

где L - длина трубопровода, c - скорость ударной волны.

2. увеличение времени остановки жидкости;

3. уравнительные баки;

4. гидроаккумуляторы, гасящие ударную волну;

1 - штуцер; 2 - стальной оцинкованный фланец; 3 - стальной сосуд с контрфланцем; 4 - сменная мембрана из бутилкаучука; 5 - воздушный клапан; 6 - площадка для крепления насоса для горизонтальной компановки; 7 - ножки.

Работает гидроаккумулятор следующим образом. В мембрану подсоединенного к водопроводу гидроаккумулятора под давлением подается вода от насоса. Объем воздушной подушки при этом уменьшается в зависимости от величины давления в мембране. По достижению установленного на предприятии - изготовителе порога срабатывания по разности давлений автоматика отключает электропитание насоса. При заборе воды баланс разности давлений вновь нарушается, и автоматика включает насос. Эффективность работы гидроаккумулятора напрямую зависит от величины разности давлений мембраны и воздушной подушки и в первую очередь зависит от качества мембраны и объема гидроаккумулятора. Выставленный ранее порог срабатывания автоматики - характеристика строго регламентированная и может корректироваться в небольшом диапазоне. В противном случае возможен разрыв мембраны. По мере эксплуатации гидроаккумулятора, воздух, растворенный в воде, со временем накапливается в мембране. Это приводит к инерционности срабатывания автоматики и в целом тоже отражается на эффективности работы гидроаккумулятора. Избежать этого позволяют профилактические работы с интервалом от 1 до 3 месяцев.

5. предохранительные клапаны.

Гаситель колебаний давления.

Для гашения колебаний давления внутри трубы используют сложные устройства, содержащие поршни, пружины, гибкие оболочки и прочие подвижные элементы. Такие устройства быстро изнашиваются и требуют частой замены. Для гашения гидроударов предлагается использовать гаситель колебаний давления предельно простой конструкции. Гаситель колебаний давления располагается внутри трубопровода 2, по которому перекачивается жидкость. Гаситель представляет собой металлическую ленту 1, по длине которой вырублены окна 3. Образующиеся при этом козырьки 4 отогнуты поочередно в противоположные стороны. Угол между козырьком 4 и плоскостью ленты 1 составляет 35-45° для воды или 25-30° для нефти. Ширина ленты 1 выбирается таким образом, чтобы она свободно входила во внутрь трубопровода 2. Длина ленты 1 равна длине защищаемого участка трубы 2. Один конец ленты с помощью сварки закрепляется внутри трубы, а второй конец ленты поворачивается вокруг продольной оси на 3-5 оборотов и также закрепляется сваркой.

Труба 2 с размещенной внутри нее лентой 1 и является гасителем гидроударов. Гаситель колебаний давления работает следующим образом. Поток жидкости при движении вдоль плоскости ленты 1 входит в окно 3 и отклоняется от плоскости козырьком 4. Поток приобретает колебательное (синусоидальное) движение с определенной частотой. Так как окон на ленте много, то частота колебания потока будет всегда превышать собственную частоту колебаний потока жидкости, определяемой неровностями местности. Таким образом, сглаживаются наиболее резкие колебания давления и дробятся наиболее крупные пузыри газа. Дополнительному гашению колебаний давлений способствует поворот ленты вокруг продольной оси с шагом 1,5-2 м (5-7 м для труб большого диаметра), в результате чего поток приобретает дополнительно вращательное движение, которое также гасит часть энергии гидроудара. Так происходит гашение энергии гидроударов за счет преобразования энергии ускоренного поступательного движения потока жидкости в колебательное и вращательное движения. Суть предложения заключается в том, что внутренний просвет трубопровода в месте установки гасителя изменяется незначительно (определяется сечением ленты), поэтому сопротивление гасителя потоку жидкости при ламинарном и неразрывном течении мало. При течении по трубе жидкости в турбулентном режиме и с включениями газовых пробок сопротивление резко возрастает из-за изменения направлений потока. Происходит выравнивание скоростей газового и жидкостного потоков при прохождении разнонаправленных козырьков, что приводит к гашению гидроударов. Оптимальное место установки гасителя в низинах, после пологих и, особенно крутых склонов, где поток жидкости разгоняется и приобретает дополнительную энергию, вызывающую впоследствии разрушительный гидроудар из-за схлопывания пузырей (разрывов потока) в жидкости.

Также применяют устройства плавного пуска, которые в целом снижают опасность возникновения гидравлического удара, но не предотвращают её полностью.

В статье рассматривается принцип работы, преимущества и опыт применения системы молниезащиты Dissipation Array System® (DAS®) от компании Lightning Eliminators & Consultants, Inc (LEС, США).

Введение
Несмотря на наличие систем молниезащиты (МЗ), аварии, вызванные молниевыми разрядами (МР) в нефтяной отрасли, поражают ежегодно до 8% объектов и их коммуникаций. По данным МЧС России, только затраты на ликвидацию последствий аварий на нефтяных объектах составляют от 1,5 до 10 млн. долларов США. Имеется много фактов, когда после первого удара молнии, молниеприёмное устройство не воспринимает последующие разряды.
В качестве примера можно привести анализ причин аварии на резервуаре РВС 20000 №22 Александровской нефтеперекачивающей станции. По показаниям очевидцев, у резервуара РВС 20000 №22 возникли подряд два разряда молнии: первый был принят отдельно стоящим в 5м от резервуара молниеприёмником, а второй пришёлся непосредственно в кровлю резервуара. После попадания МР в кровлю воспламенились пары нефти в свободном пространстве резервуара.

Расследованием причин аварии установлено, что МЗ была выполнена в полном соответствии с требованиями действующей нормативной документацией (НД) при помощи отдельно стоящих молниеотводов на расстоянии 5м и высотой 45 м. Резервуар, его система молниезащиты, заземление эксплуатировались также в соответствии с НД. Причиной удара второго разряда молнии не в молниеприёмник, а в кровлю резервуара, комиссия управления Западно-Сибирского округа Госгортехнадзора России назвала «снос ветром ионизированного канала воздуха».

Это говорит о том, что существующие системы МЗ не обеспечивают на практике достаточный уровень защиты от прямых МР. Таким образом, возникает реальная неизбежность поражения защищаемых объектов и персонала.

Предотвращение прямых ударов молний

Как видно из приведённого выше примера, прямые удары молнии происходят даже в защищённые объекты, а их последствия трудно переоценить. Помимо прямых ударов молний возможны удары в близлежащие заземлённые конструкции и объекты. Такие явления вызывают так называемые «вторичные воздействия» молний на объекты инфраструктуры нефтегазовых предприятий. Можно выделить четыре основных:

1. блуждающие токи;
2. электромагнитные импульсы;
3. электростатические импульсы;
4. связанный заряд.

Все они могут приводить к возгораниям и взрывам либо к выходу из строя контрольно-измерительной аппаратуры и автоматики. Как следствие, можно сделать вывод, что, предотвращая прямые удары в критически важные объекты и их окружение, можно снизить необходимость защиты каждой точки, потенциально подверженной индуцированным токам, и минимизировать прочие требования к защите от перенапряжений.

В 1971 году компания Lightning Eliminators & Consultants, Inc. (США) разработала систему Dissipation Array ® System (DAS®), позволяющую полностью исключить попадание молнии в защищаемую область.

Работа системы основана на принципе точечной разрядки, заключающейся в стекании заряда с острия многочисленных иголок в окружающую атмосферу и создании тем самым объёмного заряда, препятствующего развитию восходящих лидеров и задерживающих движение нисходящих лидеров молнии (Рис. 1). В результате молниевый разряд не попадает в защищаемый объект, а разряжается в незащищённой области.

Рис. 1. Предотвращение попадания молнии с помощью Dissipation Array ® System компании LEC.

DAS® состоит из трёх основных элементов:

1. Ионизатор. Это основной элемент системы молниезащиты, содержащий тысячи иголок, переносящих заряд, собранный системой заземления в окружающую атмосферу, создавая тем самым облако объёмного заряда.
При увеличении электромагнитного поля, вызванного надвигающимся грозовым фронтом, традиционные стержневые молниеприёмники формируют восходящие стримеры, которые провоцируют удар молнии. Многоточечный ионизатор, напротив, запускает процесс ионизации при несколько большей напряжённости поля, но при его увеличении ионизационные токи экспоненциально возрастают. Поскольку ионы распределяются по большой площади, никаких стримеров не возникает.
2. Система заземления. Для работы системы необходимо качественное заземление. Система сбора зарядов является источником заряда, переносимого ионизатором в атмосферу. Как только образуется положительный заряд, наведённый грозовым фронтом на поверхность земли, его часть собирается системой сбора зарядов.
Система сбора зарядов подобна обычной системе заземления, но она является приёмником, а не системой заземления для растекания токов молний. По сути, их назначения абсолютно противоположны.
3. Система переноса заряда. Система сбора зарядов соединена с ионизатором с помощью низкоомного проводника, который обеспечивает прямой перенос заряда к ионизатору. По сравнению с традиционными молниеприёмниками этот проводник несёт существенно меньший ток и предназначен не для переноса огромных токов молнии, а для соединения частей системы в единое целое. Максимальный ток не превышает нескольких миллиампер и не вызывает никаких вторичных воздействий, имеющих место при работе традиционных систем молниезащиты.

Предупреждение
формирования восходящего лидера от любого
защищаемого объекта

Предупреждение формирования восходящих лидеров от любого защищаемого объекта, способных создать проводящий канал и инициировать удар молнии в объект является важным компонентом системы. Такие лидеры обычно инициируются объектами, высота которых более 200м, или объектами в горной местности на такой высоте, где суммарный подъём допускает напряжение на наивысшей точке в пределах 106В во время процесса разряда.
Исследования, проведённые российскими учёными Э.М. Базеляном и его коллегами, сформулировали условия для уменьшения риска поражения объекта молнией. Доказано, что использование оптимизированного ионизатора способно создать и поддерживать объёмный заряд в зоне потенциального риска удара молнии. Также обнаружено, что объёмный заряд способен предотвращать зарождение групповых лидеров.

Редкие прорывы были замечены в областях, где разряды часты и преобладают именно восходящие молнии. В этих случаях плотность объёмного заряда должна быть существенно выше, чем нисходящий отрицательный разряд. Пиковые молниевые токи и сопровождающие их заряды для положительных разрядов начинаются от земли и достигают пиковых значений тока в 200 000 А. Отрицательные разряды, нисходящие от грозовой зоны, достигают пиковых значений около 80 000 А. Поэтому в областях, где преобладают позитивные разряды, объёмный заряд должен быть увеличен примерно в два раза. Электростатические поля в этих случаях значительно выше, что позволяет увеличить ионизацию.

Предупреждение касания объекта нисходящими
лидерами

Предупреждение касания объекта нисходящими лидерами – значительно более сложная задача. Последние 100 м до объекта молниевый лидер движется со скоростью около 400 м/сек. При таких скоростях необходимое количество объёмного заряда должно быть готово прежде, чем будет сформирован встречный лидер, за 50-100 миллисекунд до прибытия нисходящего лидера.

Исследования компании LEC и полевые испытания доказали, что корректно спроектированный ионизатор DAS способен реагировать и предупреждать касание молнии, генерируя комбинацию предразрядного объёмного заряда и реактивного объёмного заряда высокой плотности при приближении молниевого лидера.

Предразрядный объёмный заряд определяется размером ионизатора, электростатическим полем, временем между разрядами и скоростью перемещения объёмного заряда. Комбинация электростатического поля восходящих потоков, создаваемых грозой и силами согласно закону Кулона, вызывают непрерывный поток ионов и постоянное перемещение заряда между ионизатором и грозовой областью, как описывал физик атмосферы д-р Альтон Чалмерс. Объёмный заряд препятствует образованию групповых лидеров при высокой плотности заряда.

Чтобы понять сущность процесса фазы прерывания молниевого лидера, приближающегося к DAS, необходимо понять состояние лидера перед касанием объекта. Это продемонстрировано на рис. 1 – схема, которая поможет понять работу DAS. Она иллюстрирует процесс за миллисекунды до прерывания. Обратите внимание, что молния имеет несколько ответвлений. Все примерно на одном расстоянии от земли, одна должна коснуться поверхности. Целью является не дать ей коснуться DAS или объекта в защищённой области. Рис. 1 иллюстрирует эту ситуацию на примере мачты, защищённой DAS. DAS реагирует на приближение лидера увеличением плотности объёмного заряда.

Рис. 2. Ветвь молнии приближается к DAS .

Рис. 2 показывает реактивный пространственный заряд, созданный приближающейся ветвью молниевого лидера. Результирующий плотный объёмный заряд подавляет формирование встречного лидера, и ситуация развивается, как показано на Рис. 4, а затем – на Рис. 5. На Рис. 4 одна ветвь теперь касается дерева, все остальные стримеры замкнуты. И, наконец, объёмный заряд, сформированный DAS, также замыкается через ионизатор, создавая обратный разрядный ток, продолжающийся только несколько миллисекунд. Все заряды, содержащиеся в ветвях и вокруг ионизатора, принимают участие в процедуре нейтрализации, как показано на Рис.5. Земля возвращается к нормальному отрицательному состоянию, когда грозовые области разряжаются или уходят.

Рис. 3. Реактивный объёмный заряд, созданный приближающимся лидером.

Рис. 4. Молниевая ветвь касается дерева. Остальные ветви уходят.

Рис. 5. Заряд уходит в молниевый канал. Установка возвращается в нейтральное
состояние.

Рис. 6. Молниевая активность в радиусе 500 м от трубы в течение 3-х лет
до (а) и 3-х лет после (б) установки DAS .

Рис. 7. Молниевая активность в радиусе 5 км от трубы в течение 3-х лет
до (а) и 3-х лет после (б) установки DAS.

Процесс втягивания занимает от одной до трёх миллисекунд. Это соответствует примерно 100 мКл (0,1 А с). Тем не менее результирующая скорость может достигать от 30 до 100 кА/мс. В то же время этот обратный ток не несёт никакой разрушительной энергии, т.к. передаётся очень маленький заряд за очень короткий промежуток времени.

Защищённая область

Из принципов работы DAS вытекают три фактора, влияющие на размер и форму защищённой области:
1. количество ветвей молниевого разряда;
2. расстояние между ветвями;
3. удалённость DAS от нисходящего лидера.

Количество ветвей лидера определяет вероятность того, что одна из них приблизится к установке DAS. Обычный лидер стартует и производит несколько ветвей; тем не менее к моменту, когда он достигнет расстояния нескольких сот метров от земли, количество ветвей многократно увеличивается, как показано на Рис. 2. Поэтому вероятность удара молнии в одну из незащищённых DAS точек равна один к количеству ветвей молнии.

Таким образом, DAS задерживает развитие приближающегося лидера-ветви с целью переноса удара в другое место.

Таблица. Количество ударов молний в течение 3-х лет до и 3-х лет после установки DAS

Заключение
О состоятельности тех или иных научных утверждений можно судить на основании опыта их применения. Статистика работы DAS формировалась на протяжении 34 лет на более чем 2400 объектах, и её наработка составляет более
30 000 системных лет работы. Репрезентативность этой выборки не может вызывать сомнений.

В трубопроводах представляет собой возникающий мгновенно скачок давления. Перепад связан с резким изменением в скорости движения водного потока. Далее подробнее узнаем, как возникает гидравлический удар в трубопроводах.

Основное заблуждение

Ошибочно считается гидравлическим ударом результат заполнения жидкостью надпоршневого пространства в двигателе соответствующей конфигурации (поршневом). Вследствие этого поршень не доходит до мертвой точки и начинает сжатие воды. Это, в свою очередь, приводит к поломке двигателя. В частности, к излому штока либо шатуна, обрыву шпилек в головке цилиндра, разрывам прокладок.

Классификация

В соответствии с направлением скачка давления гидравлический удар может быть:

В соответствии со временем распространения волны и периодом перекрытия задвижки (либо прочей запорной арматуры), в течение которого образовался гидравлический удар в трубах, его разделяют на:

  • Прямой (полный).
  • Непрямой (неполный).

В первом случае фронт образовавшейся волны двигается в сторону, обратную первоначальному направлению водяного потока. Дальнейшее движение будет зависеть от элементов трубопровода, которые располагаются до закрытой задвижки. Вполне вероятно, что фронт волны пройдет неоднократно прямое и обратное направление. При неполном гидравлическом ударе поток не только может начать двигаться в другую сторону, но и частично пройти далее через задвижку, если она закрыта не до конца.

Последствия

Самым опасным считается положительный гидравлический удар в системе отопления либо водоснабжения. При слишком высоком скачке давления может повредиться магистраль. В частности, на трубах возникают продольные трещины, что приводит впоследствии к расколу, нарушению герметичности в запорной арматуре. Из-за этих сбоев начинает выходить из строя водопроводное оборудование: теплообменники, насосы. В связи с этим гидравлический удар необходимо предотвращать либо снижать его силу. становится максимальным в процессе торможения потока при переходе всей кинетической энергии в работу по растяжению стенок магистрали и сжатия столба жидкости.

Исследования

Экспериментально и теоретически изучал явление в 1899 г. Исследователем были выявлены причины гидравлического удара. Явление связано с тем, что в процессе закрытия магистрали, по которой идет поток жидкости, либо при ее быстром закрытии (при присоединении тупикового канала с источником гидравлической энергии), формируется резкое изменение давления и скорости воды. Оно не одновременно по всему трубопроводу. Если в данном случае произвести определенные измерения, то можно выявить, что изменение скорости происходит по направлению и величине, а давления - как в сторону снижения, так и увеличения относительно исходного. Все это означает, что в магистрали имеет место колебательный процесс. Он характеризуется периодическим понижением и повышением давления. Весь этот процесс отличается быстротечностью и обуславливается упругими деформациями самой жидкости и стенок трубы. Жуковским было доказано, что скорость, с которой осуществляется распространение волны, находится в прямой пропорциональной зависимости от сжимаемости воды. Также значение имеет величина деформации стенок трубы. Она определяется модулем упругости материала. Скорость волны зависит и от диаметра трубопровода. Резкий скачок давления не может возникнуть в магистрали, наполненной газом, поскольку он достаточно легко сжимается.

Ход процесса

В автономной системе водяного снабжения, например загородного дома, для создания давления в магистрали может использоваться скважинный насос. возникает при внезапном прекращении потребления жидкости - при перекрытии крана. Водяной поток, совершавший движение по магистрали, неспособен останавливаться мгновенно. Столб жидкости по инерции врезается в водопроводный "тупик", который образовался при закрытии крана. От гидравлического удара реле в данном случае не спасает. Оно только лишь реагирует на скачок, отключая насос после того, как будет перекрыт кран, а давление превысит максимальное значение. Выключение, как и остановка водяного потока, не осуществляется мгновенно.

Примеры

Можно рассмотреть трубопровод с постоянным напором и движением жидкости, имеющим постоянный характер, в котором был резко закрыт клапан или внезапно перекрыта задвижка. В скважинной системе водоснабжения, как правило, гидравлический удар возникает в случае, когда обратный затворный элемент располагается выше, чем статический уровень воды (на 9 метров и более), либо имеет утечку, в то время как находящийся выше следующий клапан удерживает давление. И в том, и в другом случае имеет место частичное разряжение. В следующем пуске насоса протекающая с высокой скоростью вода будет заполнять вакуум. Жидкость соударяется с закрытым обратным клапаном и потоком над ним, провоцируя скачок давления. В результате происходит гидроудар. Он способствует не только образованию трещин и разрушению соединений. При возникновении скачка давления повреждается насос или электродвигатель (а иногда и оба элемента сразу). Такое явление может возникнуть в системах объемного гидравлического привода, когда применяется золотниковый распределитель. При перекрытии золотником одного из каналов нагнетания жидкости возникают процессы, описанные выше.

Защита от гидравлических ударов

Сила скачка будет зависеть от скорости потока до и после перекрытия магистрали. Чем интенсивнее движение, тем сильнее удар при внезапной остановке. Скорость самого потока будет зависеть от диаметра магистрали. Чем больше сечение, тем слабее движение жидкости. Из этого можно сделать вывод о том, что использование крупных трубопроводов снижает вероятность гидроудара или ослабляет его. Еще один способ заключается в увеличении продолжительности перекрытия водопровода либо включения насоса. Для осуществления постепенного перекрытия трубы используются запорные элементы вентильного типа. Специально для насосов применяются комплекты по плавному пуску. Они позволяют не только избежать гидроудара в процессе включения, но и существенно увеличивают эксплуатационный срок насоса.

Компенсаторы

Третий вариант защиты предполагает применение демпферного устройства. Оно представляет собой мембранный расширительный бак, который способен "гасить" возникающие скачки давления. Компенсаторы гидравлического удара работают по определенному принципу. Он заключается в том, что в процессе увеличения давления происходит перемещение поршня жидкостью и сжатие упругого элемента (пружины или воздуха). В результате ударный процесс трансформируется в колебательный. Благодаря рассеиванию энергии последний затухает достаточно быстро без существенного повышения давления. Компенсатор применяют в линии наполнения. Его заряжают сжатым воздухом при давлении 0,8-1,0 МПа. Расчет производится приближенно, в соответствии с условиями поглощения энергии движущего столба воды от наполнительного бака или аккумулятора до компенсатора.

При работе с открытым пламенем горючего газа работник подвергается риску пострадать из-за воспламенения горелки или других элементов оборудования. Обратный удар при резке металла сопровождается резким хлопком, дымом из мундштука и прекращением (продолжением) горения. Чтобы избежать этого явления, необходимо проверить оборудование и при необходимости уменьшить величину отверстия подачи газа в горелке или снизить объем кислорода в смеси.

Что такое — обратный удар

Обратным ударом называется процесс горения газа по направлению, противоположному перемещению струи. Скорость сгорания выше скорости истечения, огонь перемещается в мундштук, рукава или баллон.

Важно знать, как происходит обратный удар при резке металла. Всегда слышен хлопок, потом:

  • пламя горелки гаснет, появляется черный дым из мундштука;
  • пламя горит, слышно еще несколько хлопков;
  • горелка гаснет, дым отсутствует.

Наиболее опасен последний вариант, так как может случиться взрыв.

После первого хлопка нужно перекрыть подачу кислорода и газа. Обязательна проверка давления в баллонах. После того, как горелка охладилась, ее необходимо почистить. Если хлопков несколько, следует осмотреть шланги, проверить герметичность соединений. После окончания всех манипуляций можно повторно зажечь горелку.

Причины возникновения

Причин возникновения обратного удара при резке металла несколько:

  • ошибки при регулировке объемов подачи газа и кислорода;
  • неправильный подбор пропорций смеси;
  • перегрев мундштука, провоцирующий воспламенение газа;
  • накопление в мундштуке сора, повышающего давление потока;
  • нечаянное прикосновение к мундштуку, перекрывающее отверстие;
  • переохлаждение редуктора;
  • засорение инжектора;
  • пустой баллон кислорода.

Это значит, что основная причина обратного удара – увеличение давления кислорода до уровня, превышающего пропускную способность горелки, или снижение из-за утечки или пустого кислородного баллона.

Причины аварий проще предотвратить, чем последствия. Поэтому работая с газом, необходимо:

  • затянуть соединения и проверить герметичность обмыливанием;
  • в процессе эксплуатации соблюдать правила, установленные Гостехнадзором;
  • перемещать баллоны на специальных тележках;
  • предотвратить удары баллонов друг о друга;
  • закрепить баллоны и отделить барьером, предотвращающим удары и попадание искр;
  • закрытые рабочие помещения оснастить качественной вентиляцией;
  • не хранить емкости с газом вместе с емкостями с кислородом;
  • запасные баллоны хранить в отдельном помещении;
  • не допускать попадания на баллоны жиров и масел;
  • не греть металл газом без примеси кислорода.

Важно так же каждые 5 лет проводить освидетельствование баллонов.

Последствия обратного удар

Обратный удар при резке металла пропановым резаком может разорвать шланг, редуктор, баллон, выводя оборудование из строя. Но самые страшные последствия: ожоги, травмы, человеческие жертвы.

Чтобы обезопасить работников, необходимо на горелку или редуктор установить клапан. Существуют 2 вида этих устройств: для горючих газов и кислорода. Принцип работы простой. Пламя, проникшее в рукав или горелку, гасится специальным веществом. Потоки кислорода и газа перекрывает запорная пружина.

Чтобы не страдать от обратного удара, необходимо соблюдать технику безопасности и принять дополнительные меры, позволяющие обезопасить работников. Покупка и монтаж клапанов экономически выгоднее, чем восстановление испорченного или взорвавшегося оборудования. А травмы или потерю жизни никакими деньгами не возместить.