Как получить абсолютный ноль. A

Термин «температура» появился во времена, когда ученые-физики думали, что теплые тела состоят из большего количества специфической субстанции - теплорода, - чем такие же тела, но холодные. А температура трактовалась как величина, соответствующая количеству теплорода в теле. С тех пор температуру любых тел измеряют в градусах. Но на самом деле это мера кинетической энергии движущихся молекул, и, исходя из этого, ее следует измерять в Джоулях, в соответствии с Системой единиц Си.

Понятие «абсолютный ноль температуры» исходит из второго начала термодинамики. По нему процесс перехода тепла от холодного тела к горячему невозможен. Это понятие введено английским физиком У. Томсоном. Ему за достижения в физике было даровано дворянское звание «лорд» и титул «барон Кельвин». В 1848 г. У.Томсон (Кельвин) предложил использовать температурную шкалу, в которой за начальную точку принял абсолютный ноль температуры, соответствующий предельному холоду, а ценой деления взял градус Цельсия. Единицей Кельвина является 1/27316 доля температуры тройной точки воды (около 0 град. С), т.е. температуры, при которой чистая вода сразу находится в трех видах: лед, жидкая вода и пар. температуры - это минимально возможная низкая температура, при которой движение молекул останавливается, и из вещества уже невозможно извлечь тепловую энергию. С тех пор шкала абсолютных температур стала называться его именем.

Температура измеряется по разным шкалам

Наиболее употребляемая шкала температуры носит название «шкала Цельсия». Она построена на двух точках: на температуре фазового перехода воды из жидкости в пар и воды в лед. А. Цельсий в 1742 г. предложил расстояние между опорными точками разделить на 100 промежутков, а воды принять за ноль, при этом точку замерзания за 100 градусов. Но швед К. Линней предложил сделать наоборот. С тех пор вода замерзает при ноле градусов А. Цельсия. Хотя точно по Цельсию она должна кипеть. Абсолютный ноль по Цельсию соответствует минус 273,16 градусов Цельсия.

Есть еще несколько температурных шкал: Фаренгейта, Реомюра, Ранкина, Ньютона, Рёмера. Они имеют разные и цену деления. Например шкала Реомюра тоже построена на реперах кипения и замерзания воды, но она имеет 80 делений. Шкала Фаренгейта, появившаяся в 1724 г., используется в быту только в некоторых странах мира, в т. ч. США; одна - температура смеси водяной лед - нашатырь и другая - человеческого тела. Шкала делится на сто делений. Ноль Цельсия соответствует 32 Перевод градусов в фаренгейты можно сделать по формуле: F = 1,8 C + 32. Обратный перевод: С = (F - 32)/1,8, где: F - градусы Фаренгейта, С - градусы Цельсия. Если вам лень считать, сходите в онлайн-сервис по переводу Цельсия в Фаренгейты. В рамочке наберите число градусов Цельсия, нажмите «Рассчитать», выберите «Фаренгейт» и нажмите «Пуск». Результат появится сразу.

Названа в честь английского (точнее шотландского) физика Уильяма Дж. Ранкина, бывшего современником Кельвина и одним из создателей технической термодинамики. В его шкале важных точек три: начало - абсолютный ноль, точки замерзания воды 491,67 градус Ранкина и закипания воды 671,67 град. Число делений между замерзанием воды и ее закипанием и у Ранкина, и у Фаренгейта равно 180.

Большинством этих шкал пользуются исключительно физики. А 40% опрошенных в наши дни американских школьников выпускных классов сказали, что они не знают, что такое абсолютный ноль температуры.

Абсолютному нулю соответствует температура −273,15 °C.

Считается, что абсолютный ноль на практике недостижим. Его существование и положение на температурной шкале следует из экстраполяции наблюдаемых физических явлений, при этом такая экстраполяция показывает, что при абсолютном нуле энергия теплового движения молекул и атомов вещества должна быть равна нулю, то есть хаотическое движение частиц прекращается, и они образуют упорядоченную структуру, занимая чёткое положение в узлах кристаллической решётки . Однако, на самом деле, даже при абсолютном нуле температуры регулярные движения составляющих вещество частиц останутся . Оставшиеся колебания, например нулевые колебания , обусловлены квантовыми свойствами частиц и физического вакуума , их окружающего.

В настоящее время в физических лабораториях удалось получить температуру, превышающую абсолютный ноль всего на несколько миллионных долей градуса; достичь же его самого, согласно законам термодинамики, невозможно.

Примечания

Литература

  • Г. Бурмин. Штурм абсолютного нуля. - М.: «Детская литература», 1983.

См. также

Wikimedia Foundation . 2010 .

Синонимы :

Смотреть что такое "Абсолютный нуль" в других словарях:

    Температуры, начало отсчета температуры по термодинамической температурной шкале (см. ТЕРМОДИНАМИЧЕСКАЯ ТЕМПЕРАТУРНАЯ ШКАЛА). Абсолютный нуль расположен на 273,16 °С ниже температуры тройной точки (см. ТРОЙНАЯ ТОЧКА) воды, для которой принято… … Энциклопедический словарь

    Температуры, начало отсчета температуры по термодинамической температурной шкале. Абсолютный нуль расположен на 273,16шC ниже температуры тройной точки воды (0,01шC). Абсолютный нуль принципиально недостижим, практически достигнуты температуры,… … Современная энциклопедия

    Температуры начало отсчета температуры по термодинамической температурной шкале. Абсолютный нуль расположен на 273,16 .С ниже температуры тройной точки воды, для которой принято значение 0,01 .С. Абсолютный нуль принципиально недостижим (см.… … Большой Энциклопедический словарь

    Температура, выражающая отсутствие теплоты, равна 218° Ц. Словарь иностранных слов, вошедших в состав русского языка. Павленков Ф., 1907. абсолютный нуль температуры (физ.) – наиболее низкая возможная температура (273,15°C). Большой словарь… … Словарь иностранных слов русского языка

    абсолютный нуль - Предельно низкая температура, при которой прекращается тепловое движение молекул, в шкале Кельвина абсолютный нуль (0°К) соответствует –273,16±0,01°С … Словарь по географии

    Сущ., кол во синонимов: 15 круглый ноль (8) маленький человек (32) мелкая сошка … Словарь синонимов

    Предельно низкая температура, при которой прекращается тепловое движение молекул. Давление и объем идеального газа, согласно закону Бойля Мариотта, становится равным нулю, а за начало отсчета абсолютной температуры по шкале Кельвина принимается… … Экологический словарь

    абсолютный нуль - — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN zeropoint … Справочник технического переводчика

    Начало отсчета абсолютной температуры. Соответствует 273,16° С. В настоящее время в физических лабораториях удалось получить температуру, превышающую абсолютный нуль всего на несколько миллионных долей градуса, достичь же его, согласно законам… … Энциклопедия Кольера

    абсолютный нуль - absoliutusis nulis statusas T sritis Standartizacija ir metrologija apibrėžtis Termodinaminės temperatūros atskaitos pradžia, esanti 273,16 K žemiau vandens trigubojo taško. Tai 273,16 °C, 459,69 °F arba 0 K temperatūra. atitikmenys: angl.… … Penkiakalbis aiškinamasis metrologijos terminų žodynas

    абсолютный нуль - absoliutusis nulis statusas T sritis chemija apibrėžtis Kelvino skalės nulis (−273,16 °C). atitikmenys: angl. absolute zero rus. абсолютный нуль … Chemijos terminų aiškinamasis žodynas


Что такое абсолютный ноль (чаще — нуль)? Действительно ли эта температура существует где-либо во Вселенной? Можем ли мы охладить что-либо до абсолютного нуля в реальной жизни? Если вам интересно, можно ли обогнать волну холода, давайте исследуем самые дальние пределы холодной температуры…

Что такое абсолютный ноль (чаще — нуль)? Действительно ли эта температура существует где-либо во Вселенной? Можем ли мы охладить что-либо до абсолютного нуля в реальной жизни? Если вам интересно, можно ли обогнать волну холода, давайте исследуем самые дальние пределы холодной температуры…

Даже если вы не физик, вы, вероятно, знакомы с понятием температуры. Температура — это мера измерения количества внутренней случайной энергии материала. Слово «внутренней» очень важно. Бросьте снежок, и хотя основное движение будет достаточно быстрым, снежный ком останется довольно холодным. С другой стороны, если вы посмотрите на молекулы воздуха, летающие по комнате, обычная молекула кислорода жарит со скоростью тысяч километров в час.

Мы обычно умолкаем, когда речь заходит о технических деталях, поэтому специально для экспертов отметим, что температура немного более сложная вещь, чем мы сказали. Истинное определение температуры подразумевает то, сколько энергии вам нужно затратить на каждую единицу энтропии (беспорядка, если хотите более понятное слово). Но давайте опустим тонкости и просто остановимся на том, что случайные молекулы воздуха или воды в толще льда будут двигаться или вибрировать все медленнее и медленнее, по мере понижения температуры.

Абсолютный ноль — это температура -273,15 градусов Цельсия, -459,67 по Фаренгейту и просто 0 по Кельвину. Это точка, где тепловое движение полностью останавливается.


Все останавливается?

В классическом рассмотрении вопроса при абсолютном нуле останавливается все, но именно в этот момент из-за угла выглядывает страшная морда квантовой механики. Одним из предсказаний квантовой механики, которое попортило кровь немалому количеству физиков, является то, что вы никогда не можете измерить точное положение или импульс частицы с совершенной определенностью. Это известно как принцип неопределенности Гейзенберга.

Если бы вы могли охладить герметичную комнату до абсолютного нуля, произошли бы странные вещи (об этом чуть позже). Давление воздуха упало бы практически до нуля, и поскольку давление воздуха обычно противостоит гравитации, воздух сколлапсирует в очень тонкий слой на полу.

Но даже в этом случае, если вы сможете измерить отдельные молекулы, вы обнаружите кое-что любопытное: они вибрируют и вращаются, совсем немного — квантовая неопределенность в работе. Чтобы поставить точки над i: если вы измерите вращение молекул углекислого газа при абсолютном нуле, вы обнаружите, что атомы кислорода облетают углерод со скоростью несколько километров в час — куда быстрее, чем вы предполагали.

Разговор заходит в тупик. Когда мы говорим о квантовом мире, движение теряет смысл. В таких масштабах все определяется неопределенностью, поэтому не то чтобы частицы были неподвижными, вы просто никогда не сможете измерить их так, словно они неподвижны.

Async: true }); }); t = d.getElementsByTagName("script"); s = d.createElement("script"); s.type = "text/javascript"; s.src = "//an.yandex.ru/system/context.js"; s.async = true; t.parentNode.insertBefore(s, t); })(this, this.document, "yandexContextAsyncCallbacks");


Как низко можно пасть?

Стремление к абсолютному нулю по существу встречается с теми же проблемами, что и стремление к скорости света. Чтобы набрать скорость света, понадобится бесконечное количество энергии, а достижение абсолютного нуля требует извлечения бесконечного количества тепла. Оба этих процесса невозможны, если что.

Несмотря на то, что мы пока не добились фактического состояния абсолютного нуля, мы весьма близки к этому (хотя «весьма» в этом случае понятие очень растяжимое; как детская считалочка: два, три, четыре, четыре с половиной, четыре на ниточке, четыре на волоске, пять). Самая низкая температура, когда-либо зарегистрированная на Земле, была зафиксирована в Антарктиде в 1983 году, на отметке -89,15 градусов Цельсия (184K).

Конечно, если вы хотите остыть не по-детски, вам нужно нырнуть в глубины космоса. Вся вселенная залита остатками излучения от Большого Взрыва, в самых пустых регионах космоса — 2,73 градуса по Кельвину, что немногим холоднее, чем температура жидкого гелия, который мы смогли получить на Земле век назад.

Но физики-низкотемпературщики используют замораживающие лучи, чтобы вывести технологию на совершенно новый уровень. Вас может удивить то, что замораживающие лучи принимают форму лазеров. Но как? Лазеры должны сжигать.

Все верно, но у лазеров есть одна особенность — можно даже сказать, ультимативная: весь свет излучается на одной частоте. Обычные нейтральные атомы вообще не взаимодействуют со светом, если частота не настроена точным образом. Если же атом летит к источнику света, свет получает допплеровский сдвиг и выходит на более высокую частоту. Атом поглощает меньшую энергию фотона, чем мог бы. Так что если настроить лазер пониже, быстродвижущиеся атомы будут поглощать свет, а излучая фотон в случайном направлении, будут терять немного энергии в среднем. Если повторять процесс, вы можете охладить газ до температуры меньше одного наноКельвина, миллиардной доли градуса.

Все приобретает более экстремальную окраску. Мировой рекорд самой низкой температуры составляет менее одной десятой миллиарда градуса выше абсолютного нуля. Устройства, которые добиваются этого, захватывают атомы в магнитные поля. «Температура» зависит не столько от самих атомов, сколько от спина атомных ядер.

Теперь, для восстановления справедливости, нам нужно немного пофантазировать. Когда мы обычно представляем себе что-то, замороженной до одной миллиардной доли градуса, вам наверняка рисуется картинка, как даже молекулы воздуха замерзают на месте. Можно даже представить разрушительное апокалиптическое устройство, замораживающее спины атомов.

В конечном счете, если вы действительно хотите испытать низкую температуру, все, что вам нужно, это ждать. Спустя примерно 17 миллиардов лет радиационный фон во Вселенной остынет до 1К. Через 95 миллиардов лет температура составит примерно 0,01К. Через 400 миллиардов лет глубокий космос будет таким же холодным, как самый холодный эксперимент на Земле, и после этого — еще холоднее.

Если вам интересно, почему вселенная остывает так быстро, скажите спасибо нашим старым друзьям: энтропии и темной энергии. Вселенная находится в режиме акселерации, вступая в период экспоненциального роста, который будет продолжаться вечно. Вещи буду замерзать очень быстро.


Какое нам дело?

Все это, конечно, замечательно, да и рекорды побивать тоже приятно. Но в чем смысл? Что ж, есть масса веских причин разбираться в низинах температуры, и не только на правах победителя.

Хорошие ребята из Национального института стандартов и технологий, например, просто хотели бы сделать классные часы. Стандарты времени основаны на таких вещах, как частота атома цезия. Если атом цезия движется слишком много, появляется неопределенность в измерениях, что, в конечном счете, приведет к сбою часов.

Но что более важно, особенно с точки зрения науки, материалы ведут себя безумно на экстремально низких температурах. К примеру, как лазер состоит из фотонов, которые синхронизируются друг с другом — на одной частоте и фазе — так и материал, известный как конденсат Бозе-Эйнштейна, может быть создан. В нем все атомы находятся в одном и том же состоянии. Или представьте себе амальгаму, в которой каждый атом теряет свою индивидуальность, и вся масса реагирует как один нуль-супер-атом.

При очень низких температурах многие материалы становятся сверхтекучими, что означает, что они могут совершенно не обладать вязкостью, укладываться сверхтонкими слоями и даже бросать вызов гравитации в достижении минимума энергии. Также при низких температурах многие материалы становятся сверхпроводящими, что означает отсутствие какого-либо электрического сопротивления.

Сверхпроводники способны реагировать на внешние магнитные поля таким образом, чтобы полностью отменять их внутри металла. В результате, вы можете объединить холодную температуру и магнит и получить что-то типа левитации.


Почему есть абсолютный ноль, но нет абсолютного максимума?

Давайте взглянем на другую крайность. Если температура — это просто мера энергии, то можно просто представить атомы, которые подбираются ближе и ближе к скорости света. Не может же это продолжаться бесконечно?

Есть короткий ответ: мы не знаем. Вполне возможно, что буквально существует такая вещь, как бесконечная температура, но если есть абсолютный предел, юная вселенная предоставляет достаточно интересные подсказки относительно того, что это такое. Самая высокая температура, когда-либо существовавшая (как минимум в нашей вселенной), вероятно, случилась в так называемое «время Планка».

Это был миг длиной в 10^-43 секунд после Большого Взрыва, когда гравитация отделилась от квантовой механики и физика стала именно такой, какой является сейчас. Температура в то время была примерно 10^32 K. Это в септиллион раз горячее, чем нутро нашего Солнца.

Опять же, мы совсем не уверены, самая ли это горячая температура из всех, что могли быть. Поскольку у нас даже нет большой модели вселенной в момент времени Планка, мы даже не уверены, что Вселенная кипятилась до такого состояния. В любом случае, к абсолютному нулю мы во много раз ближе, чем к абсолютной жаре.

Абсолютный нуль температуры

Предельную температуру, при которой объем идеального га­за становится равным нулю, принимают за абсолютный нуль температуры.

Найдем значение абсолютного нуля по шкале Цельсия.
Приравнивая объем V в формуле (3.1) нулю и учитывая, что

.

Отсюда абсолютный нуль температуры равен

t = –273 °С. 2

Это предельная, самая низкая температура в природе, та «на­ибольшая или последняя степень холода», существование которой предсказал Ломоносов.

Наибольшие температуры на Земле – сотни миллионов граду­сов – получены при взрывах термоядерных бомб. Еще более высокие температуры характерны для внутренних областей некоторых звезд.

2Более точное значение абсолютного нуля: –273,15 °С.

Шкала Кельвина

Английский ученый У. Кельвин ввел абсолютную шкалу температур. Нулевая температура по шкале Кельвина соот­ветствует абсолютному нулю, и единица температуры по этой шкале равна градусу по шкале Цельсия, поэтому абсолютная температура Т связана с температурой по шкале Цельсия фор­мулой

Т = t + 273. (3.2)

На рис. 3.2 для сравнения изображены абсолютная шкала и шкала Цельсия.

Единица абсолютной темпера­туры в СИ называется кельвином (сокращенно К). Следова­тельно, один градус по шкале Цельсия равен одному градусу по шкале Кельвина:

Таким образом, абсолютная температура по определению, да­ваемому формулой (3.2), являет­ся производной величиной, зависящей от температуры Цельсия и от экспериментально определяемого значения a.

Читатель: А какой физический смысл имеет абсолютная температура?

Запишем выражение (3.1) в виде

.

Учитывая, что температура по шкале Кельвина связана с температурой по шкале Цельсия соотношением Т = t + 273, получим

где Т 0 = 273 К, или

Поскольку это соотношение справедливо для произвольной температуры Т , то закон Гей-Люссака можно сформулировать так:

Для данной массы газа при р = const выполняется соотношение

Задача 3.1. При температуре Т 1 = 300 К объем газа V 1 = 5,0 л. Определите объем газа при том же давлении и температуре Т = 400 К.

СТОП! Решите самостоятельно: А1, В6, С2.

Задача 3.2. При изобарическом нагревании объем воздуха увеличился на 1 %. На сколько процентов повысилась абсолютная температура?

= 0,01.

Ответ : 1 %.

Запомним полученную формулу

СТОП! Решите самостоятельно: А2, А3, В1, В5.

Закон Шарля

Французский ученый Шарль экспериментально установил, что если нагревать газ так, чтобы его объем оставался постоянным, то давление газа будет увеличиваться. Зависимость давления от температуры имеет вид:

р (t ) = p 0 (1 + bt ), (3.6)

где р (t ) – давление при температуре t °С; р 0 – давление при 0 °С; b – температурный коэффициент давления, который одинаков для всех газов: 1/К.

Читатель: Удивительно, что температурный коэффициент давления b в точности равен температурному коэффициенту объемного расширения a!

Возьмем определенную массу газа объемом V 0 при температуре Т 0 и давлении р 0 . В первый раз, поддерживая давление газа постоянным, нагреем его до температуры Т 1 . Тогда газ будет иметь объем V 1 = V 0 (1 + at ) и давление р 0 .

Во второй раз, поддерживая объем газа постоянным, нагреем его до той же температуры Т 1 . Тогда газ будет иметь давление р 1 = р 0 (1 + bt ) и объем V 0 .

Так как в обоих случаях температура газа одинакова, то справедлив закон Бойля–Мариотта:

p 0 V 1 = p 1 V 0 Þ р 0 V 0 (1 + at ) = р 0 (1 + bt )V 0 Þ

Þ 1 + at = 1 + bt Þ a = b.

Так что ничего удивительного в том, что a = b, нет!

Перепишем закон Шарля в виде

.

Учитывая, что Т = t °С + 273 °С, Т 0 = 273 °С, получим

Любое физическое тело, включая все объекты во Вселенной, имеет минимальный показатель температуры или ее предел. За точку отсчета любой температурной шкалы и принято считать значение абсолютного нуля температур. Но это только в теории. Хаотичное движение атомов и молекул, которые отдают в это время свою энергию, остановить пока на практике не удалось.

Это и есть основная причина, почему нельзя достичь абсолютного нуля температур. До сих пор ведутся споры и о последствиях этого процесса. С точки зрения термодинамики этот предел недостижим, так как тепловое движение атомов и молекул прекращается полностью, образуется кристаллическая решетка.

Представители квантовой физики предусматривают наличие при абсолютном нуле температур минимальных нулевых колебаний.

Какое значение абсолютного нуля температур и почему его нельзя достичь

На генеральной конференции по мерам и весам была установлена впервые реперная или точка отсчета для измерительных приборов, определяющих показатели температуры.

В настоящее время в Международной системе единиц реперная точка для шкалы Цельсия составляет 0°C при замерзании и 100°C в процессе кипения, значение абсолютного нуля температур приравнивается к −273,15°C.

Используя температурные значения по шкале Кельвина по той же Международный системе измерения единиц, кипение воды будет происходить при реперном значении 99,975°C, абсолютный нуль приравнивается к 0. По Фаренгейту на шкале соответствует показателю -459,67 градусов.

Но, если эти данные получены, почему тогда нельзя на практике достичь абсолютного нуля температур. Для сравнения можно взять известную всем скорость света, которая равна постоянному физическому значению 1 079 252 848,8 км/ч.

Однако эту величину достичь не удается на практике. Она зависит и от длины волны передачи, и от условий, и от необходимого поглощения большого количества энергии частицами. Чтобы получить значение абсолютного нуля температур, необходима большая отдача энергии и отсутствие ее источников для предотвращения попадания ее в атомы и молекулы.

Но даже в условиях полного вакуума ни скорости света, ни абсолютного нуля температур ученым получить так и не удалось.

Почему можно достичь приблизительного нуля температур, но нельзя абсолютного

Что же будет происходить, когда наука сможет вплотную приблизиться к достижению предельно низкого показателя температуры абсолютного нуля, пока остается только в теории термодинамики и квантовой физики. В чем причина, почему нельзя достичь абсолютного нуля температур на практике.

Все известные попытки охладить вещество до самой низкой предельной границы за счет максимальной потери энергии приводили к тому, что значение теплоемкости вещества так же достигало минимального значения. Отдавать оставшуюся часть энергии молекулы уже были просто не в состоянии. В результате процесс охлаждения прекращался, так и не достигнув абсолютного нуля.

При изучении поведения металлов в условиях, приближенных к значению абсолютного нуля температур, ученые установили, что максимальное понижение температуры должно спровоцировать потерю сопротивления.

Но прекращение движения атомов и молекул привело только к образованию кристаллической решетки, через которую проходящие электроны передавали часть своей энергии неподвижным атомам. Достичь абсолютного нуля опять не удалось.

В 2003 году до температуры абсолютного нуля не хватило всего лишь половины миллиардной доли 1°C. Исследователи «NASA» использовали для проведения опытов молекулу Na, которая все время находилась в магнитном поле и отдавала свою энергию.

Ближе всех стало достижение ученых Йельского университета, которое в 2014 году добилась показателя в 0,0025 Кельвинов. Полученное соединение монофторид стронция (SrF) существовало всего лишь 2,5 секунды. И в итоге все равно распалось на атомы.