Измерения. Измерение (физика)

Измерением называют совокупность операций, выполняемых с помощью технических средств, хранящих единицу величины и позволяющих сопоставить с нею измеряемую величину.

Широкое распространение получило определение: "Измерение - познавательный процесс, заключающийся в сравнении путем физического эксперимента данной величины с известной величиной, принятой за единицу сравнения".

В стандарте дано определение более лаконичное, но содержащее ту же мысль. "Измерение - нахождение значения физической величины опытным путем с помощью специальных технических средств".

Сравнение неизвестного размера с известным и выражение первого через второй в кратном или дольном отношении человеку приходится делать в жизни бесчисленное количество раз. Сравнивая в уме высоту людей с представлением о единице длины в Международной системе, мы измеряем их рост на глаз с точностью до нескольких сантиметров. Наверное, многим из нас не трудно определить, с какой примерно скоростью движется автомобиль. Результаты таких измерений в значительной мере зависят от квалификации тех, кто их выполняет. Штангист, например, довольно точно может определить массу поднимаемой штанги. В этом случае информация о размерах тех или иных физических величин, доставляемая с помощью органов чувств, сравнивается с представлением о соответствующих единицах, и неизвестные размеры выражаются через эти единицы в кратном или дольном отношении, т.е. выполняется измерение по шкале отношений.

Измерения, основанные на использовании органов чувств человека (осязания, обоняния, зрения, слуха и вкуса), называются органолептическими .

Природа в разной степени наделила людей способностями к органолептическим измерениям по шкале отношений. Частоту звуковых колебаний, например, могут определить лишь те немногие, кто обладает абсолютным слухом. Большинство же воспринимает разность звуковых частот в тонах и полутонах, т.е. способно к измерению частоты звука только по шкале интервалов. Измерения по шкале интервалов, будучи менее совершенными, чем по шкале отношений, могут выполняться и без участия органов чувств. Измерение времени, например, или гравитации (космонавтами) основываются на ощущениях. Еще менее совершенные измерения по шкале порядка строятся на впечатлениях. К ним относятся конкурсы мастеров искусств (скульпторов, художников, поэтов, композиторов), соревнования спортсменов по фигурному катанию на коньках и т.п. Измерения, основанные на интуиции, называются эвристическими. При всех таких измерениях кроме ранжирования (расстановки измеряемых величин в порядке убывания или возрастания их размеров) широко применяется способ попарного сопоставления, когда измеряемые величины сначала сравниваются между собой попарно и для каждой пары результат сравнения выражается в форме «больше-меньше» или «лучше-хуже». Затем ранжирование производится на основании результатов попарного сопоставления.


Иногда попарное сопоставление проводят более тщательно, учитывая равноценность.

Особое место в измерениях по шкале порядка занимает сравнение с размером, равным нулю. Такое измерение называется обнаружением , а результатом измерения является решение о том, отлично от нуля значение измеряемой величины или нет.

Человек является высокосовершенным «средством измерения». Однако вполне объективными могут считаться только измерения, выполняемые без участия человека.

Измерения, выполняемые с помощью специальных технических средств, называются инструментальными . Среди них могут быть автоматизированные и автоматические. При автоматизированных измерениях роль человека полностью не исключена. Он может, например, проводить съем данных с отсчетного устройства измерительного прибора (шкалы со стрелкой или цифрового табло), вести их регистрацию в журнале, обрабатывать в уме или с помощью вычислительных средств. На качество этих операций влияет настроение человека, степень его сосредоточенности, серьезности, мера ответственности за порученное дело, уровень профессиональной подготовки. То есть, элемент субъективизма при автоматизированных измерениях остается.

Автоматические измерения выполняются без участия человека. Результат их представляется в форме документа и является совершенно объективным.

По способу получения числового значения измеряемой величины все измерения делят на четыре основных вида: прямые, косвенные, совокупные и совместные.

Прямые измерения - это измерение, при котором искомое значение величины находят непосредственно сравнивая физическую величину с ее мерой. Например, при определении длины предмета линейкой происходит сравнение искомой величины (количественного выражения значения длины) с мерой, т.е. линейкой. К прямым измерениям можно отнести и измерение температуры термометром, электрического напряжения - вольтметром и т.д. Прямые измерения - основа более сложных видов измерений.

Косвенные измерения отличаются от прямых тем, что искомое значение величины устанавливают по результатам прямых измерений таких величин, которые связаны с искомой определенной зависимостью. Так, используя известную функциональную взаимосвязь, можно рассчитать электрическое сопротивление по результатам измерений падения напряжения и силы тока. Значения некоторых величин легче и проще находить путем косвенных измерений, так как иногда прямые измерения практически невозможно осуществить. Например, плотность твердого тела обычно определяют по результатам измерений объема и массы.

Совокупными называют измерения, в которых значения измеряемых величин находят по данным повторных измерений одной или нескольких одноименных величин при различных сочетаниях мер или этих величин. Результаты совокупных измерений находят путем решения системы уравнений, составляемых по результатам нескольких прямых измерений.

Совместные измерения - это одновременные измерения (прямые или косвенные) двух или более неоднородных физических величин для определения функциональной зависимости между ними. Например, определение зависимости длины тела от температуры.

По характеру изменения измеряемой величины в процессе измерений различают статистические, динамические и статические измерения.

Статистические измерения связаны с определением характеристик случайных процессов, звуковых сигналов, уровня шумов и т.д.

Статические измерения имеют место тогда, когда измеряемая величина практически постоянна (длина прыжка в длину, дальность полета снаряда, вес ядра и т.д.).

Динамические измерения связаны с такими величинами, которые в процессе измерений претерпевают те или иные изменения. Например, усилия развиваемые спортсменом в опорный период при прыжках в длину с разбега.

По количеству измерительной информации измерения бывают однократные и многократные.

Однократные измерения - это одно измерение одной величины, т.е. число измерений равно числу измеряемых величин. Так как однократные измерения всегда сопряжены с погрешностями, то следует проводить не менее трех однократных измерений и конечный результат находить как среднее арифметическое значение.

Многократные измерения характеризуются превышением числа измерений количества измеряемых величин. Обычно минимальное число измерений в данном случае больше трех. Преимущество многократных измерений - в значительном снижении влияний случайных факторов на погрешность измерения.

По отношению к основным единицам измерения делят на абсолютные и относительные. Абсолютными измерениями называют такие, при которых используются прямое измерение одной (иногда нескольких) основной величины и физическая константа. Так, в известной формуле Эйнштейна Е=m с, масса (m) - основная физическая величина, которая может быть измерена прямым путем (взвешиванием), а скорость света (с) - физическая константа.

Относительные измерения базируются на установлении отношения измеряемой величины к однородной, применяемой в качестве единицы. Понятно, что искомое значение зависит от используемой единицы измерений.

В метрологической практике основой для измерения физической величины служит шкала измерений - упорядоченная совокупность значений физической величины.

Количественной характеристикой измеряемой величины служит ее размер. Получение информации о размере физической или нефизической величины является содержанием любого измерения. Простейший способ получения такой информации, позволяющий составить некоторое представление о размере измеряемой величины, состоит в сравнении его с другим по принципу "что больше (меньше)?" или "что лучше (хуже)?". Более подробная информация о том, на сколько больше (меньше) или во сколько раз лучше (хуже) иногда даже не требуется. Подобным образом решаются многие задачи выбора: кто сильнее? Что нагляднее? Как проще? И т.п. При этом число сравниваемых между собой размеров может быть достаточно большим. Расположенные в порядке возрастания или убывания размеры измеряемых величин образуют шкалу порядка. Так, например, на многих конкурсах и соревнованиях мастерство исполнителей и спортсменов (или целых команд) определяется их местом, занятым в итоговой таблице. Эта таблица является шкалой порядка - формой представления измерительной информации, отражающей тот факт, что мастерство одних выше мастерства других, хотя и неизвестно, в какой степени (на сколько, или во сколько раз). Построив людей по росту, можно, пользуясь шкалой порядка, сделать вывод о том, кто выше кого, однако сказать на сколько выше, или во сколько раз - нельзя. Расстановка размеров в порядке их возрастания или убывания с целью получения измерительной информации по шкале порядка называется ранжированием.

Для облегчения измерений по шкале порядка некоторые точки на ней можно зафиксировать в качестве опорных (реперных). Знания, например, измеряют по реперной шкале порядка, имеющей следующий вид: неудовлетворительно, удовлетворительно, хорошо, отлично. Точками реперной шкалы могут быть поставлены в соответствие цифры, называемые баллами. Например, интенсивность землетрясений измеряется по двенадцатибальной международной сейсмической шкале МSК-64, сила ветра - по шкале Бофорта.

Международная сейсмическая шкала MSK для измерения силы землетрясений

Сила Название Признаки

трясения,

1 Незаметное Отмечается только сейсмическими приборами

2 Очень слабое Ощущается отдельными людьми, находящимися в состоянии

3 Слабое Ощущается лишь небольшой частью населения

4 Умеренное Распознается по мелкому дребезжанию и колебанию предметов,

посуды оконных стекол, скрипу дверей и стен

6 Сильное Ощущается всеми. Картины падают со стен, откалываются куски

штукатурки, легкое повреждение зданий

7 Очень сильное Трещины в стенах каменных домов. Антисейсмические, а также

деревянные постройки остаются невредимыми

8 Разрушительное Трещины на крутых склонах и на сырой почве. Памятники

сдвигаются с места или опрокидываются. Дома сильно

повреждаются.

9 Опустошительное Сильное повреждение и разрушение каменных домов

10 Уничтожающее Крупные трещины в почве. Оползни и обвалы. Разрушение

каменных построек, искривление железнодорожных рельсов

11 Катастрофа Широкие трещины в земле. Многочисленные оползни и обвалы.

Каменные дома совершенно разрушаются

12 Сильная Изменения в почве достигают огромных размеров.

Многочисленные обвалы, оползни, трещины. Возникновение

Катастрофа водопадов, подпруд на озерах. Отклонение течения рек. Ни

одно сооружение не выдерживает.

______________________________________________________________________________________

Шкала Бофорта для измерения силы ветра

Сила Название Признаки

0 Штиль Дым идет вертикально

1 Тихий Дым идет слегка наклонно

2 Легкий Ощущается лицом, шелестят листья

3 Слабый Развеваются флаги

4 Умеренный Поднимается пыль

5 Свежий Вызывает волны на воде

6 Сильный Свистит в вантах, гудят провода

7 Крепкий На волнах образуется пена

8 Очень крепкий Трудно идти против ветра

9 Шторм Срывает черепицу

10 Сильный шторм Вырывает деревья с корнем

11 Жестокий шторм Большие разрушения

12 Ураган Опустошительное действие


Особенно широкое распространение реперные шкалы получили в гуманитарных науках, спорте, искусстве и других областях, где измерения еще не достигли высокого совершенства. В спорте чаще всего шкала порядка используется в художественной гимнастике, фигурном катании, единоборствах и т.п. Так, в художественной гимнастике артистизм спортсменок устанавливается в виде рангов: ранг победителя – 1, второе место – 2 и т.д.

Недостатком реперных шкал является неопределенность интервалов между реперными точками. Поэтому баллы нельзя складывать, вычитать, перемножать, делить и т.д. Более совершенным в этом отношении являются шкалы, составленные из строго определенных интервалов. Общепринятым, например, является измерение времени по шкале разбитой на интервалы, равные периоду обращения Земли вокруг Солнца (летоисчисление). Эти интервалы (годы) делятся на более мелкие (сутки), равные периоду обращения Земли вокруг своей оси. Сутки в свою очередь делятся на часы, часы на минуты, минуты на секунды. Такая шкала называется шкалой интервалов (разностей). По шкале интервалов можно уже судить не только о том, что один размер больше другого, но и о том, на сколько больше. Т.е. на шкале интервалов определены такие математические действия, как сложение и вычитание. Данные шкалы интервалов дают ответ на вопрос "на сколько больше?", но не позволяют утверждать, что одно значение измеренной величины во столько-то раз больше или меньше другого. Например, если: температура повысилась с 10 до 20 по Цельсию, то нельзя сказать, что стало в два раза теплее; в соревнованиях по художественной гимнастике при определении артистичности между второй и четвертой спортсменками два ранга, то это вовсе не означает, что вторая вдвое артистичнее четвертой. Это объясняется тем, что на шкале интервалов известен масштаб, а начало отсчета может быть выбрано произвольно.

Если в качестве одной из двух реперных точек выбрать такую, в которой размер не принимается равным нулю (что приводит к появлению отрицательных значений), а равен нулю на самом деле, то по такой шкале уже можно отсчитывать абсолютное значение размера и определять не только, на сколько один размер больше или меньше другого, но и во сколько раз он больше или меньше. Эта шкала называется шкалой отношений.

Шкала отношений является наиболее совершенной из всех рассматриваемых шкал. Но, к сожалению, построение шкалы отношений возможно не всегда. Время, например, может измеряться только по шкале интервалов. В спорте по шкале отношений измеряют расстояние, силу, скорость и десятки других переменных.

В зависимости от того, на какие интервалы разбита шкала, один и тот же размер представляется по-разному. Например, 0,001 км; 1 м; 100см; 1000 мм- четыре варианта представления одного и того же размера. Их называют значениями измеряемой величины. Таким образом, значение измеряемой величины - это выражение ее размера в определенных единицах измерения. Входящее в него отвлеченное число называется числовым значением. Оно показывает, на сколько единиц измеряемый размер больше нуля или во сколько раз он больше единицы (измерения). Так, измеряя длину прыжка, мы узнаем, во сколько раз эта длина больше длины другого тела, принятого за единицу длины (метровой линейки в частном случае); взвешивая штангу, определяем отношение ее массы к массе другого тела - единичной гири "килограмма" и т.п.

Самой простой из всех шкал является шкала наименований или номинальная шкала (от латинского слова " номе" - имя). В этой шкале нет отношений типа "больше-меньше". Здесь речь идет о группировке объектов, идентичных по определенному признаку, и о присвоении им обозначений в виде цифр, которые служат для обнаружения и различения изучаемых объектов (например, нумерация игроков в командах). При использовании шкалы наименований могут проводится только некоторые математические операции. Например, можно подсчитывать, сколько раз (как часто) встречается то или иное число.

Характеристики и примеры шкал измерений

Шкала Характеристики Математические Примеры

Наименований Объекты сгруппированы, Число случаев Номер спортсмена

а группы обозначены но- Мода на, амплуа и т.д.

мерами. То, что номер Тетрахорические

одной группы больше или и полихорические

меньше другой, еще ниче- коэффициенты

го не говорит об их свойст- корреляции

вах, за исключением того,

Что они различаются.

Порядка Числа, присвоенные объек- Медиана Результаты

там, отражают количество Ранговая корреляция ранжирования

свойства, принадлежащего Ранговые критерии спортсменов в тесте

им. Возможно установление Проверка гипотез

соотношения «больше» или непараметрической

«меньше» статистикой

Интервалов Существует единица изме- Все методы статисти- Температура тела,

Рений, при помощи которой ки, кроме определения суставные углы

объекты можно не только отношений и т.д.

упорядочить, но и приписать

им числа так, чтобы равные

разности отражали разные

различия в количестве из-

меряемого свойства. Нуле-

вая точка произвольна и не

указывает на отсутствие

свойства.

Отношений Числа, присвоенные пред- Все методы статис- Длина и масса тела,

метам, обладают всеми тики сила движений, уско-

свойствами интервальной рение и т.п.

шкалы. На шкале существу-

ет абсолютный нуль, кото-

рый указывает на полное

Отсутствие данного свойства

У объекта. Отношение чисел,

присвоенных объектам пос-

Ле измерений, отражают

количественные отношения

Измеряемого свойства

Основной постулат метрологии.

Любое измерение по шкале отношений предполагает сравнение неизвестного размера с известным и выражение первого через второй в кратном или дольном отношении. В математическом выражении процедура сравнения неизвестного значения с известным и выражения первого через второй в кратном или дольном отношении запишется следующим образом: Q

На практике не всегда неизвестный размер может быть представлен для сравнения с единицей. Жидкости и сыпучие вещества, например, предъявляются на взвешивание в таре. Другой пример, когда очень маленькие линейные размеры могут быть измерены только после увеличения их микроскопом или другим прибором. В первом случае процедуру измерения можно выразить отношением –Q+ n , во втором – n Q

где n - масса тары, а n- коэффициент увеличения. Само сравнение, в свою очередь, происходит под влиянием множества случайных и неслучайных, аддитивных (от латинского aditivas - прибавляемый) и мультипликативных (от латинского multiplico - умножаю) факторов, точный учет которых невозможен, а результат совместного воздействия непредсказуем. Если мы ограничимся, для простоты рассмотрения, только аддитивными воздействиями, совместное влияние которых можно учесть случайным слагаемым h, то получим следующее уравнение измерения по шкале отношений :

Это уравнение выражает действие, т.е. процедуру сравнения в реальных условиях, которая и является измерением. Отличительной особенностью такой измерительной процедуры является то, что при ее повторении из-за случайного характера h отсчет по шкале отношений Х получается каждый раз разным. Это фундаментальное положение является законом природы. На основании громадного опыта практических измерений сформулировано следующее утверждение, называемое основным постулатом метрологии: отсчет является случайным числом. На этом постулате основана вся метрология.

Полученное уравнение является математической моделью измерения по шкале отношений.

Аксиомы метрологии . Первая аксиома: без априорной информации измерение невозможно. Эта аксиома метрологии относится к ситуации перед измерением и говорит о том, что если об интересующем нас свойстве мы ничего не знаем, то ничего и не узнаем. С другой стороны, если о нем известно все, то измерение не нужно. Таким образом, измерение обусловлено дефицитом количественной информации о том или ином свойстве объекта или явления и направлено на его уменьшение.

Вторая аксиома : измерение есть ни что иное как сравнение. Эта аксиома относится к процедуре измерения и говорит о том, что нет иного экспериментального способа получения информации о каких бы то ни было размерах, кроме как путем сравнения их между собой. Народная мудрость, говорящая о том, что «все познается в сравнении», перекликается здесь с трактовкой измерения Л.Эйлером, данной свыше 200 лет тому назад: «Невозможно определить или измерить одну величину иначе как приняв в качестве известной другую величину этого же рода и указав соотношение, в котором она находится с ней».

Третья аксиома : результат измерения без округления является случайным. Эта аксиома относится к ситуации после измерения и отражает тот факт, что на результат реальной измерительной процедуры всегда оказывает влияние множество разнообразных, в том числе случайных факторов, точный учет которых в принципе невозможен, а окончательный итог непредсказуем. Вследствие этого, как показывает практика, при повторных измерениях одного и того же постоянного размера, либо при одновременном измерении его разными лицами, разными методами и средствами получаются неодинаковые результаты, если только не производить их округления (огрубления). Это отдельные значения случайного по своей природе результата измерения.

Факторы, влияющие на качество измерений .

Получение отсчета (либо принятие решения) – основная измерительная процедура. Однако во внимание должно приниматься еще множество факторов, учет которых представляет иногда довольно сложную задачу. При подготовке и проведении высокоточных измерений в метрологической практике учитывается влияние:

Объекта измерения,

Субъекта (эксперта или экспериментатора),

Способа измерения,

Средства измерения,

Условий измерения.

Объект измерений должен быть достаточно изучен. Перед измерением необходимо представить себе модель исследуемого объекта, которая в дальнейшем, по мере поступления измерительной информации, может изменяться и уточняться. Чем полнее модель соответствует измеряемому объекту или исследуемому явлению, тем точнее измерительный эксперимент.

Для измерений в спорте объект измерений - один из самых сложных моментов, потому что представляет собой переплетение многих взаимосвязанных параметров с большими индивидуальными «разбросами» измеряемых величин (на них в свою очередь, оказывают влияние биологические «внешние» и «внутренние», географические, генетические, психологические, социально-экономические и другие факторы).

Эксперт или экспериментатор вносят в процесс измерения элемент субъективизма, который по возможности должен быть уменьшен. Он зависит от квалификации измерителя, его психофизиологического состояния, соблюдения эргономических требований при измерениях и много другого. Все эти факторы заслуживают внимания. К измерениям допускаются лица, прошедшие специальную подготовку, имеющие соответствующие знания, умения и практические навыки. В ответственных случаях их действия должны быть строго регламентированы.

Влияние средства измерений на измеряемую величину во многих случаях проявляется как возмущающий фактор. Включение электроизмерительных приборов приводит к перераспределению токов и напряжений в электрических цепях и тем самым оказывает влияние на измеряемые величины.

К числу влияющих факторов относятся также условия измерений. Сюда входят температура окружающей среды, влажность, атмосферное давление, электрические и магнитные поля, напряжение в сети питания, тряска, вибрация и многое другое.

Общая характеристика влияющих факторов может быть дана под разными углами зрения: внешние и внутренние, случайные и неслучайные, последние – постоянные и меняющиеся во времени и т.д. и т.п.. Один из вариантов классификации влияющих факторов приведен на рис.1.

Неправильная установка средства измерений

2. Влияние средства измерений на объект

3. Климатические

4. Электрические и магнитные б-в процессе

5. Механические и акустические измерения

6. Ионизирующие излучения и др.

7. Случайные внешние помехи

И внутренние шумы

8 . Квалификация и психофизическое

состояние персонала

1. Качество алгоритма обработки данных

2. Несовершенство средств обработки

данных в- апостериорные

3. Квалификация и психофизическое

состояние персонала

Рис.1.Классификация влияющих факторов.

Априорные факторы (а) включают:

1. Влияние на результат измерения качества и количества информации об измеряемом размере. Чем ее больше, чем выше ее качество – тем точнее результат измерения. Накопление априорной информации – один из путей повышения точности результатов измерений.

2. Влияние того очевидного факта, что модель не может в точности соответствовать объекту.

3. Влияние теоретических допущений и упрощений, лежащих в основе метода измерений.

4. Влияние несовершенства измерительного инструмента или прибора, которое может быть как следствием некачественного его изготовления, так и результатом длительной эксплуатации. Отметка шкал показывающих приборов, например, не вполне точно соответствуют измеряемым значениям. В процессе эксплуатации происходит старение материалов, возникает износ механизмов и деталей, развиваются люфты, зазоры, случаются скрытые метрологические отказы (выходы метрологических характеристик за пределы установленных для них норм). Понятно, что результат измерения находится в прямой зависимости от этих факторов.

В процессе измерения (б):

1. Неправильная установка и подготовка к работе средств измерений, принцип действия которых в той или иной степени связан с механическим равновесием, приводит к искажению их показаний. К подобным средствам измерений относятся приборы, в конструкцию которых входит маятник, приборы с подвешенной подвижной частью и др. Многие из них для установки в правильное положение снабжаются уровнями (отвесами, ватерпасами).

2. Влияние средства измерений на объект может до неузнаваемости изменить реальную картину. Например, перераспределение токов и напряжений в электрических цепях при подключении электроизмерительных приборов иногда оказывает заметное влияние на результат измерения.

3. Влияние климатических (температура окружающей среды, относительная влажность воздуха, атмосферное давление), электрических и магнитных (колебания силы электрического тока или напряжения в электрической сети, частоты переменного электрического тока, постоянные и переменные магнитные поля и др.), механических и акустических (вибрации, ударные нагрузки, сотрясения) факторов, а также ионизирующих излучений, газового состава атмосферы и т.п. принято относить к условиям измерений. Такие условия, влиянием которых на результат измерения можно пренебречь, называют нормальными.

1. Случайные внешние помехи и внутренние шумы измерительных приборов оказывают непредсказуемое совместное влияние на результат измерения, вследствие чего он имеет стохастическую природу.

2. Квалификация и психофизическое состояние персонала (или оператора), выполняющего измерение (знания, умения и навыки, сосредоточенность, внимательность, уравновешенность, добросовестность, самочувствие, острота зрения и многое другое), имеют большое значение.

После измерения (в) :

1. От правильной обработки экспериментальных данных во многом зависит результат измерения.

2. Технические средства, используемые для обработки экспериментальных данных, не дают новой измерительной информации. Они лишь помогают с большим или меньшим успехом извлекать ее из экспериментальных данных и тем самым оказывают влияние на результат измерения.

3. Неграмотные или безответственные действия персонала (оператора) при обработке экспериментальных данных могут свести на нет любые усилия, затраченные на их получение.

Приведенные классификации далеко не исчерпывают всего многообразия факторов, влияющих на результат измерения.

ВОПРОСЫ ДЛЯ САМОКОНТРОЛЯ

1. Что называют измерением?

2. На какие виды делят измерения по способу получения числового значения?

3. Как различаются измерения по характеру изменения измеряемой величины?

4. Какими бывают измерения по количеству измерительной информации?

5. Как делят измерения по отношению к основным единицам?

6. Что такое шкала измерений?

7. Как образуется шкала порядка?

8. Что называется шкалой интервалов?

9. Какие особенности шкалы отношений?

10. Что такое шкала наименований?

11. Как снизить влияние объекта измерений на точность измерительного эксперимента?

12. Как влияют на процесс измерения субъекты измерений?

13. Что можно отнести к условиям измерений?

14. Как снизить влияние объекта измерений на точность измерительного эксперимента?

15. Как влияют на процесс измерения субъекты измерений?

16. Что можно отнести к условиям измерений?

Люди часто сталкиваются с нахождением какой-либо физической величины. В этом случае говорят об измерении чего-либо. Этот термин происходит из науки, которая называется метрологией. Что такое измерение?

Определение

Измерением называется процесс определения какой-либо физической величины при помощи средств измерения опытным путем. Результат процесса измерения - это значение в принятых единицах, которое называют действительным.

Принципом измерений называют физическое явление или несколько таких явлений, которые положены в основу измерений. К примеру, измерение температуры при помощи термоэлектрического эффекта.

Что такое метод измерения? Это такая совокупность приемов применения средств измерений и их принципов. А что такое Это те технические средства, которые имеют метрологические свойства, соответствующие нормам.

Виды измерений

Итак, что такое измерение, определение которого дано выше, понятно. Но бывают еще и виды, классификацию которых проводят, исходя из того, как измеряемая величина зависит от вида уравнения, времени, условий, которые определяют точность итогов измерения, а также способов, которыми эти результаты выражаются.

Зависимость от времени

Обращая внимание на зависимость величины, которая измеряется от времени, можно выделить два вида измерения:

  • Динамическими называются такие измерения, в процессе которых величина изменяется во времени. Примером может быть измерение температуры или давления при процессе сжатия газа в цилиндрах двигателя.
  • Статическими называют измерения, при которых необходимая величина с течением времени не изменяется. Примеры: измерение температуры, постоянного давления, размеров.

Зависимость от уравнения

Способ получения результатов, который определяется видом уравнения для измерений делит измерения на прямые и косвенные, а также совместные и совокупные.

  • измерение? Это такое измерение, при котором нужное значение физической величины находится непосредственно из данных, полученных в результате опыта. Примерами прямых измерений могут служить: измерение температуры при помощи термометра, измерение диаметра изделия при помощи микрометра или штангенциркуля, измерение углов при помощи угломера.
  • Что такое измерение косвенное? Это такое измерение, при котором искомая величина определяется на основании зависимости между теми величинами, которые находятся при помощи прямых измерений и искомой величиной. Примеры таких измерений: измерение диаметра резьбы при помощи метода трех проволочек, нахождение объема тела с использование прямых измерений его размеров. Косвенные измерения очень распространены тогда, когда величину чересчур сложно или же невозможно измерить прямым способом. Бывает так, что искомую величину можно измерить лишь косвенным путем. Сюда можно отнести измерение размеров астрономических тел.
  • Что такое измерение совокупное? Это такое измерение, при котором нужные значения определяются по результатам нескольких измерений величин при различных сочетаниях. Само значение искомой величины определяется с помощью решения системы уравнений, которые составляются по результатам серии прямых измерений. Пример совокупных измерений: определение массы каждой гири из набора, то есть это калибровка по известной массе одной из гирь, а также по результатам прямых измерений и сравнения масс сочетаний гирь.
  • Совместным измерением называется то, которое производится одновременно для двух или же нескольких величин с разными именами для того, чтобы найти между ними функциональную зависимость. Примером может быть определение длины объекта в зависимости от температуры.

Зависимость от условий

По условиям, которые определяют точность результата, можно разделить измерения на три класса:

1. которая является максимальной. Сюда можно отнести измерения высокой и эталонной точности.

2. Контрольно-проверочные. Их погрешность с некоторой вероятность не должна быть выше какого-то заданного значения.

3. Технические. Это измерения, где погрешность итогового значения определяется характеристиками средств, используемых в процессе измерения.

Зависимость от способов выражения результатов

По способу выражения результатов измерения можно разделить на абсолютные и относительные.

  • Что такое измерение абсолютное? Это то измерение, которое основано на прямых измерениях величин либо на применении значений каких-то физических констант. Примеры: определение силы тока в амперах, длины в метрах.
  • Что такое измерение относительное? Это такое измерение, при котором нужную с другой величиной, которая играет роль единицы или является принятой за исходную. Пример таких измерений: нахождение относительной влажности воздуха, которая определяется в виде отношения числа водяных паров в кубическом метре воздуха к числу паров, насыщающих кубический метр воздуха при заданной температуре.

Система измерений

Единство измерений означает согласованность размеров всех величин. Это очевидно, если обратить внимание на то, что одну и ту же величину можно измерить как прямыми, так и косвенными методами. Такой согласованности можно достичь, создав систему единиц. Первая такая система появилась в конце 18 века. Ею стала всем известная метрическая система. А первой научно обоснованной системой единиц стала система, предложенная Карлом Гауссом. В ней были приняты за основу три единицы: секунда, миллиметр и миллиграмм. Именно на основе такой абсолютной системы была построена современная система единиц.

Что такое единица измерения и какими они бывают

Единицей измерения называют конкретную величину, которая определена и установлена по договоренности. С ней сопоставляются другие величины такого же рода для выражения их размера относительно указанной величины.

Каждой измеряемой физической величине должна соответствовать своя единица измерения. Таким образом, отдельные единицы необходимы для длины, объема, веса, расстояния и так далее. Каждую единицу можно определить, если выбрать какой-либо эталон. Система единиц становится более удобной, если она содержит только несколько единиц, которые выбраны основными, а остальные определяются уже через них. Эталонной единицей длины является метр. Основываясь на этом, единицей площади считают квадратный метр, единицей скорости - метр в секунду, а единицей измерения объема - метр в кубе.

Погрешность

Что такое погрешность измерения? Этим термином называют отклонение результатов измерения от действительного или истинного значения величины, которая измеряется. Истинное значение величины является неизвестным. Оно применяется лишь в теоретических исследованиях.

Иногда на вопрос «что такое погрешность измерения?» можно услышать в качестве ответа другое определение - «ошибка измерения». Но лучше его не применять, так как оно является менее удачным.

Виды погрешностей

Систематической является составляющая часть погрешности итогового результата измерения, которая остается постоянной или изменяется закономерно при повторяющихся измерениях физической величины. Характер измерения делит систематические погрешности несколько видов.

  • Постоянная погрешность - это такая погрешность, которая сохраняет свое значение на протяжении длительного времени. Такой вид встречается наиболее часто.
  • Прогрессивная погрешность - это та, которая непрерывно возрастает или убывает. Сюда можно отнести погрешности, происходящие из-за износа измерительных приборов или наконечников, которые контактируют с деталями.
  • Периодическая погрешность - это погрешность, значение которой представляет собой периодическую функцию времени или перемещение указателя прибора, применяемого при измерении.
  • Погрешность, которая измеряется по сложному закону - это та, которая происходит из-за совестного действия сразу нескольких систематических погрешностей.

Инструментальной погрешностью называют составляющую погрешности измерений, которая обусловлена погрешностью используемого средства.

Погрешностью метода измерений является составляющая, которая обусловлена несовершенством метода, который принят для измерения.

Результат измерения

Что такое результат измерения? Это значение физической величины, которое получено путем ее измерения.

Неисправленным результатом измерения называют значение величины, которое получено в процессе измерения до того, как в него были введены поправки, учитывающие систематические погрешности.

Исправленным результатом является значение величины, которое получено при измерении и уточнено при помощи введения нужных поправок.

Сходимостью результатов измерений называется близость результатов, которые выполнялись повторно при помощи одних и тех же средств, тем же самым методом и в тех же самых условиях.

Что такое воспроизводимость результатов? Это близость друг к другу результатов, которые были получены в разных местах, разными средствами и операторами при помощи различных методов, но которые были приведены к одинаковым условиям.

Рядом результатов измерений является последовательность значений одной и той же величины, которые были получены в результате серии измерений, следующих друг за другом.

Измерение информации

Сегодня измерять можно не только физические величины. Так как наступила эра компьютерных технологий, всюду используется информация в цифровом виде. Ее тоже возможно измерить. Что такое измерение информации? Это определение числа данных, которые выражены в своих единицах. Эталонной единицей измерения информации является бит, который является объемом информации, которая возникает при равновероятных событиях. К примеру, подбрасывание монеты может привести к двум равновероятным исходам. Выпадение одной из сторон содержит в себе информацию объемом в один бит.

Название этой единицы измерения произошло от сокращения термина «двоичное число». Это такое число, которое может принимать лишь два значения - единицу или ноль. Такие числа использую во всех видах вычислительной техники для представления любой информации. Так как бит является очень маленькой единицей измерения информации, то принято использовать более крупные. Это байты, килобайты, мегабайты, гигабайты, терабайты и так далее.

Объем, который занимает любой символ, введенный с клавиатуры равен одному байту. Это 8 бит.

Итоги

Таким образом, были рассмотрены все понятия, используемые в измерении. Это система измерений, погрешность и ее виды, результаты. Было рассмотрено, что такое единица измерения, и какими эти единицы бывают. Все это необходимо знать людям, имеющим дело с наукой, вычислениями, а также просто для расширения кругозора. Ведь в век информационных технологий актуальна мудрость о том, что знание - это сила.

Физика является экспериментальной наукой. Ее законы базируются на фактах, установленных опытным путем. Однако, только экспериментальных методов физических исследований недостаточно, чтобы получить полное представление об изучаемых физикой явлениях.

Современная физика широко использует теоретические методы физических исследований, которые предусматривают анализ данных, полученных в результате экспериментов, формулировку законов природы, объяснение конкретных явлений на основе этих законов, а главное - предсказания и теоретическое обоснование (с широким использованием математических методов) новых явлений.

Теоретические исследования проводятся не с конкретным физическим телом, а с его идеализированным аналогом - физической моделью, которая имеет небольшое количество основных свойств исследуемого тела. Например, в ходе изучения некоторых видов механического движения используют модель физического тела - материальную точку.

Эта модель применяется, если размеры тела не являются существенными для теоретического описания его движения, то есть в модели «материальная точка» учитывают только массу тела, а форму тела и его размеры во внимание не берут.

Как измерить физическую величину

Определение 1

Физическая величина - это характеристика, которая является общей для многих материальных объектов или явлений в качественном отношении, но может приобретать индивидуальное значение для каждого из них.

Измерение физических величин называют последовательность экспериментальных операций для нахождения физической величины, характеризующей объект или явление. Измерить - значит сравнить измеряемую величину с другой, однородной с ней величиной, принятой за эталон.

Завершается измерения определением степени приближения найденного значение к истинному или к истинно среднему. Истинным средним характеризуются величины, которые носят статистический характер, например, средний рост человека, средняя энергия молекул газа и тому подобное. Такие параметры, как масса тела или его объем, характеризуются истинным значением. В этом случае можно говорить о степени приближения найденного среднего значения физической величины к ее истинному значению.

Измерения могут быть как прямыми, когда искомую величину находят непосредственно по опытным данным, так и косвенным, когда окончательный ответ на вопрос находят через известные зависимости между физической величиной. Нас интересует и величины, которые можно получить экспериментально с помощью прямых измерений.

Путь, масса, время, сила, напряжение, плотность, давление, температура, освещенность - это далеко не все примеры физических величин, с которыми многие познакомились в ходе изучения физики. Измерить физическую величину - это значит сравнить ее с однородной величиной, взятой за единицу.

Измерение бывают прямые и косвенные. В случае прямых измерений величину сравнивают с ее единицей (метр, секунда, килограмм, ампер и т.д.) с помощью измерительного прибора, проградуированный в соответствующих единицах.

Основными экспериментально измеряемыми величинами являются расстояние, время и масса. Их измеряют, например, с помощью рулетки, часов и весов (или весов) соответственно. Существуют также приборы для измерения сложных величин: для измерения скорости движения тел используют спидометры, для определение силы электрического тока - амперметры и т. д.

Основные типы погрешностей измерений

Несовершенство измерительных приборов и органов чувств человека, а часто - и природа самой измеряемой величины приводят к тому, что результат при любом измерении получают с определенной точностью, то есть эксперимент дает не истинное значение измеряемой величины, а довольно близкое.

Точность измерения определяется близостью этого результата к истинному значение измеряемой величины или к истинному среднего, количественной мерой точности измерения является погрешность. В общем указывают абсолютную погрешность измерения.

Основные типы погрешностей измерений включают в себя:

  1. Грубые ошибки (промахи), которые возникают в результате небрежности или невнимательности экспериментатора. Например, отсчет измеряемой величины случайно проведенный без необходимых приборов, неверно прочитана цифра на шкале и тому подобное. Этих погрешностей легко избежать.
  2. Случайные ошибки возникают по разным причинам, действие которых различны в каждом из опытов, они не могут быть предусмотрены заранее. Эти погрешности подчиняются статистическим закономерностям и высчитываются с помощью методов математической статистики.
  3. Систематические ошибки возникают в результате неправильного метода измерения, неисправности приборов и т.д. Один из видов систематических погрешностей – погрешности приборов, определяющих точность измерения приборов. При считывании результат измерений неизбежно округляется, учитывая цену деления и, соответственно, точность прибора. Этих видов ошибок невозможно избежать и они должны быть учтены наряду со случайными ошибками.

В предложенных методических указаниях приведены конечные формулы теории погрешностей, необходимые для математической обработки результатов измерений.

Площадь в системе СИ

Площадь, объем и скорость являются производными единицами, их размерности происходят от основных единиц измерения.

В расчетах используют также кратные единицы, в целую степень десятки превышают основную единицу измерения. К примеру: 1 км = 1000 м, 1 дм = 10 см (сантиметров), 1 м = 100 см, 1 кг = 1000 г. Или частные единицы, в целый степень десятки меньше установленной единицы измерения: 1 см = 0,01 м, 1 мм = 0,1 см.

С единицами времени несколько иначе: 1 мин. = 60 с, 1 ч. = 3600 с. Частных является лишь 1 мс (миллисекунда) = 0,001 с и 1 мкс (микросекунда) = 10-6с.

Рисунок 1. Список физических величин. Автор24 - интернет-биржа студенческих работ

Измерения и измерительные приборы

Измерения и измерительные приборы включает в себя:

  1. Измерительные приборы - устройства, с помощью которых измеряют физические величины.
  2. Скалярные физические величины - физические величины, которые задают только числовыми значениями.
  3. Физическая величина - физическое свойство материального объекта, физического явления, процесса, который может быть охарактеризовано количественно.
  4. Векторные физические величины - физические величины, характеризующие числовым значением и направлением. Значение векторной величины называют ее модулем.
  5. Длина - расстояние от точки до точки.
  6. Площадь - величина, определяющая размер поверхности, одна из основных свойств геометрических фигур.
  7. Объем - вместимость геометрического тела, или части пространства, ограниченной замкнутыми поверхностями.
  8. Перемещение тела - направленный отрезок, проведенный из начального положения тела в его конечное положение.
  9. Масса - физическая величина, являющаяся одной из основных характеристик тела, обычно обозначается латинской буквой m.
  10. Сила притяжения - сила, с которой Земля притягивает предметы.

Что такое Измерение? Значение и толкование слова izmerenie, определение термина

1) Измерение - - англ. measurement; нем. Messen. Определение соотношения к.-л. величины с однородной ее величиной, принимаемой за единицу меры. Результат И. выражается числом, показывающим, сколько раз выбранная единица содержится в измеряемой величине. Различают прямые и косвенные И.; в последнем случае измеряется некая величина, связанная непосредственно с измеряемой величиной заранее известным отношением.

2) Измерение - - определение соотношения к.-л. величины с однородной ей величиной, принимаемой за единицу меры. Рез-т И. выражается числом, показывающим, сколько раз выбранная единица содержится в измеряемой величине. Различают прямые и косвенные И.; в последнем случае измеряется некая величина, связанная с измеряемой величиной заранее известным отношением. См. также Теория измерений.

3) Измерение - - применение инструментария для подсчета или любого другого способа количественной характеристики результатов наблюдений над действительностью.

4) Измерение - - процедура присвоения рубрикационных символов наблюдаемым объектам в соответствии с некоторым правилом. Символы могут быть просто метками, представляющими классы или категории объектов в популяции, или числами, характеризующими степень выраженности у объекта измеряемого свойства. Символы-метки могут также представлять собой числа, но при этом не обязательно нести в себе характерную "числовую" информацию. Целью И. является получение формальной модели, исследование которой могло бы, в определенном смысле, заменить исследование самого объекта. Как всякая модель, И. приводит к потере части информации об объекте и/или ее искажению, иногда значительному. Потеря и искажение информации приводит к возникновению ошибок И., величина которых зависит от точности измерительного инструмента, условий, при которых производится И., квалификации наблюдателя. Различают случайные и систематические ошибки И. При исследовании отдельно взятого объекта ошибки обоих типов представляют одинаковую опасность. При статистическом обобщении информации о некоторой совокупности измеренных объектов случайные ошибки, в известной степени, взаимно "погашаются", в то время как систематические ошибки могут привести к значительному смещению результатов. Алгоритм (правило) присвоения символа объекту называется измерительной шкалой. Как всякая модель, измерительные шкалы должны правильно отражать изучаемые характеристики объекта и, следовательно, иметь те же свойства, что и измеряемые показатели. Различают четыре основных типа измерительных шкал, получившие следующие названия: шкала наименований, шкала порядка, интервальная шкала и шкала отношений. Шкала наименований, или номинальная шкала, используется только для обозначения принадлежности объекта к одному из нескольких непересекающихся классов. Приписываемые объектам символы, которые могут быть цифрами, буквами, словами или некоторыми специальными символами, представляют собой только метки соответствующих классов. Характерной особенностью номинальной шкалы является принципиальная невозможность упорядочить классы по измеряемому признаку - к ним нельзя прилагать суждения типа "больше - меньше", "лучше - хуже" и т.п. Примерами номинальных шкал являются пол и национальность, специальность по образованию, марка сигарет, предпочитаемый цвет. Единственным отношением, определенным на шкале наименований, является отношение тождества: объекты, принадлежащие к одному классу, считаются тождественными, к разным классам - различными. Так, при И. пола мы относим каждого человека к одному из двух классов - мужчин или женщин, и при этом всех мужчин (и всех женщин) полагаем тождественными друг другу. Если при этом классы обозначены цифрами, что удобно при компьютерной обработке (например, 1 - мужской пол, 2 - женский), то такие цифры не являются числами в прямом смысле этого слова и не обладают свойствами чисел. В частности, к ним нельзя применять действия арифметики. Частным случаем шкалы наименований является дихотомическая шкала, с помощью которой фиксируют наличие у объекта определенного качества или его соответствие некоторому требованию. По установившейся традиции при измерении дихотомических показателей применяют следующие обозначения: 0 - если объект не обладает требуемым свойством, 1 - если обладает. Шкалы порядка позволяют не только разбивать объекты на классы, но и упорядочивать классы по возрастанию (убыванию) изучаемого признака. На шкале порядка, кроме отношения тождества, определено также отношение порядка: об объектах, отнесенных к одному из классов, известно не только то, что они тождественны друг другу, но также, что они обладают измеряемым свойством в большей или меньшей степени, чем объекты из других классов. Но при этом порядковые шкалы не могут ответить на вопрос, на сколько (во сколько раз) это свойство выражено сильнее у объектов из одного класса, чем у объектов из другого класса. Примерами шкал порядка могут служить уровень образования, военные и академические звания, тип поселения (большой - средний - малый город - село), некоторые естественнонаучные шкалы (твердость минералов, сила шторма, бонитет лесопосадок). Так, можно сказать, что 6-балльный шторм заведомо сильнее, чем 4-балльный, но нельзя определить на сколько он сильнее; выпускник университета имеет более высокий образовательный уровень, чем выпускник средней школы, но разница в уровне образования не поддается непосредственному И. Упорядоченные классы достаточно часто нумеруют в порядке возрастания (убывания) измеряемого признака. Однако в силу того, что различия в значениях признака точному И. не поддаются, к шкалам порядка, также как к номинальным шкалам, действия арифметики не применяют. Исключение составляют оценочные шкалы, при использовании которых объект получает (или сам выставляет) оценки, исходя из определенного числа баллов. К таким шкалам относятся, например, школьные оценки, для которых считается вполне допустимым рассчитывать, например, средний балл по аттестату зрелости. Строго говоря, подобные шкалы являются частным случаем шкалы порядка, так как нельзя определить, на сколько знания "отличника" больше, чем знания "троечника", но в силу некоторых теоретических соображений с ними часто обращаются, как со шкалами более высокого ранга - шкалами интервалов. Другим частным случаем шкалы порядка является ранговая шкала, применяемая обычно в тех случаях, когда признак заведомо не поддается объективному И. (например, красота или степень неприязни), или когда порядок объектов более важен, чем точная величина различий между ними (места, занятые в спортивных соревнованиях). В таких случаях эксперту иногда предлагают проранжировать по определенному критерию некий список объектов, качеств, мотивов и т.п. В силу того, что символы, присваиваемые объектам в соответствии с порядковыми и номинальными шкалами, не обладают числовыми свойствами, даже если записываются с помощью цифр, эти два типа шкал получили общее название качественных в отличие от количественных шкал интервалов и отношений. Шкалы интервалов и отношений имеют общее свойство, отличающее их от качественных шкал: они предполагают не только определенный порядок между объектами или их классами, но и наличие некоторой единицы И., позволяющей определять, на сколько значение признака у одного объекта больше или меньше, чем у другого. Другими словами, на обеих количественных шкалах, помимо отношений тождества и порядка, определено отношение разности, к ним можно применять арифметические действия сложения и вычитания. Естественно, что символы, приписываемые объектам в соответствии с количественными измерительными шкалами, могут быть только числами. Основное различие между этими двумя шкалами состоит в том, что шкала отношений имеет абсолютный нуль, не зависящий от произвола наблюдателя и соответствующий полному отсутствию измеряемого признака, а на шкале интервалов нуль устанавливается произвольно или в соответствии с некоторыми условными договоренностями. Примерами шкалы интервалов являются календарное время, температурные шкалы Цельсия и Фаренгейта. Шкала оценок с заданным количеством баллов часто рассматривается как интервальная в предположении, что минимальное и максимальное положения на шкале соответствуют некоторым крайним оценкам или позициям, и интервалы между баллами шкалы имеют одинаковую длину. К шкалам отношений относится абсолютное большинство измерительных шкал, применяемых в науке, технике и быту: рост и вес, возраст, расстояние, сила тока, время (длительность промежутка между двумя событиями), температура по Кельвину (абсолютный нуль). Шкала отношений является единственной шкалой, на которой определено отношение отношения, то есть разрешены арифметические действия умножения и деления и, следовательно, возможен ответ на вопрос, во сколько раз одно значение больше или меньше другого. Количественные шкалы делятся на дискретные и непрерывные. Дискретные показатели измеряются в результате счета: число детей в семье, количество решенных задач и т.п. Непрерывные шкалы предполагают, что измеряемое свойство изменяется непрерывно, и при наличии соответствующих приборов и средств могло бы быть измерено с любой необходимой степенью точности. Результаты И. непрерывных показателей довольно часто выражаются целыми числами (например, шкала IQ для И. интеллекта) , но это связано не с природой самих показателей, а с характером измерительных процедур. Различают первичные и вторичные И. Первичные получаются в результате непосредственного И.: длина и ширина прямоугольника, число родившихся и умерших за год, ответ на вопрос теста, оценка на экзамене. Вторые являются результатом некоторых манипуляций с первичными И., обычно с помощью неких логико-математических конструкций: площадь прямоугольника, демографические коэффициенты смертности, рождаемости и естественного прироста, результаты тестирования, зачисление или незачисление в институт по результатам вступительных экзаменов. Для проведения И. в естественных и точных науках, в быту применяются специальные измерительные инструменты, которые во многих случаях представляют собой довольно сложные приборы. Качество И. определяется точностью, чувствительностью и надежностью инструмента. Точностью инструмента называется его соответствие существующему в данной области стандарту (эталону). Чувствительность инструмента определяется величиной единицы И., например, в зависимости от природы объекта расстояние может измеряться в микронах, сантиметрах или километрах. Надежностью называется способность инструмента к воспроизведению результатов И. в пределах чувствительности шкалы. В гуманитарных и общественных дисциплинах (за исключением экономики и демографии) большинство показателей не поддаются непосредственному И. с помощью традиционных технических средств. Вместо них применяются всевозможные анкеты, тесты, стандартизированные интервью и т.п., получившие общее название измерительного инструментария. Кроме очевидных проблем точности, чувствительности и надежности, для гуманитарного инструментария существует также достаточно острая проблема валидности - способности измерять именно то свойство личности, которое предполагается его автором. О.В. Терещенко

5) Измерение - (measurement) - см. Критерии и уровни измерения.

Измерение

Англ. measurement; нем. Messen. Определение соотношения к.-л. величины с однородной ее величиной, принимаемой за единицу меры. Результат И. выражается числом, показывающим, сколько раз выбранная единица содержится в измеряемой величине. Различают прямые и косвенные И.; в последнем случае измеряется некая величина, связанная непосредственно с измеряемой величиной заранее известным отношением.

Определение соотношения к.-л. величины с однородной ей величиной, принимаемой за единицу меры. Рез-т И. выражается числом, показывающим, сколько раз выбранная единица содержится в измеряемой величине. Различают прямые и косвенные И.; в последнем случае измеряется некая величина, связанная с измеряемой величиной заранее известным отношением. См. также Теория измерений.

Применение инструментария для подсчета или любого другого способа количественной характеристики результатов наблюдений над действительностью.

Процедура присвоения рубрикационных символов наблюдаемым объектам в соответствии с некоторым правилом. Символы могут быть просто метками, представляющими классы или категории объектов в популяции, или числами, характеризующими степень выраженности у объекта измеряемого свойства. Символы-метки могут также представлять собой числа, но при этом не обязательно нести в себе характерную "числовую" информацию. Целью И. является получение формальной модели, исследование которой могло бы, в определенном смысле, заменить исследование самого объекта. Как всякая модель, И. приводит к потере части информации об объекте и/или ее искажению, иногда значительному. Потеря и искажение информации приводит к возникновению ошибок И., величина которых зависит от точности измерительного инструмента, условий, при которых производится И., квалификации наблюдателя. Различают случайные и систематические ошибки И. При исследовании отдельно взятого объекта ошибки обоих типов представляют одинаковую опасность. При статистическом обобщении информации о некоторой совокупности измеренных объектов случайные ошибки, в известной степени, взаимно "погашаются", в то время как систематические ошибки могут привести к значительному смещению результатов. Алгоритм (правило) присвоения символа объекту называется измерительной шкалой. Как всякая модель, измерительные шкалы должны правильно отражать изучаемые характеристики объекта и, следовательно, иметь те же свойства, что и измеряемые показатели. Различают четыре основных типа измерительных шкал, получившие следующие названия: шкала наименований, шкала порядка, интервальная шкала и шкала отношений. Шкала наименований, или номинальная шкала, используется только для обозначения принадлежности объекта к одному из нескольких непересекающихся классов. Приписываемые объектам символы, которые могут быть цифрами, буквами, словами или некоторыми специальными символами, представляют собой только метки соответствующих классов. Характерной особенностью номинальной шкалы является принципиальная невозможность упорядочить классы по измеряемому признаку - к ним нельзя прилагать суждения типа "больше - меньше", "лучше - хуже" и т.п. Примерами номинальных шкал являются пол и национальность, специальность по образованию, марка сигарет, предпочитаемый цвет. Единственным отношением, определенным на шкале наименований, является отношение тождества: объекты, принадлежащие к одному классу, считаются тождественными, к разным классам - различными. Так, при И. пола мы относим каждого человека к одному из двух классов - мужчин или женщин, и при этом всех мужчин (и всех женщин) полагаем тождественными друг другу. Если при этом классы обозначены цифрами, что удобно при компьютерной обработке (например, 1 - мужской пол, 2 - женский), то такие цифры не являются числами в прямом смысле этого слова и не обладают свойствами чисел. В частности, к ним нельзя применять действия арифметики. Частным случаем шкалы наименований является дихотомическая шкала, с помощью которой фиксируют наличие у объекта определенного качества или его соответствие некоторому требованию. По установившейся традиции при измерении дихотомических показателей применяют следующие обозначения: 0 - если объект не обладает требуемым свойством, 1 - если обладает. Шкалы порядка позволяют не только разбивать объекты на классы, но и упорядочивать классы по возрастанию (убыванию) изучаемого признака. На шкале порядка, кроме отношения тождества, определено также отношение порядка: об объектах, отнесенных к одному из классов, известно не только то, что они тождественны друг другу, но также, что они обладают измеряемым свойством в большей или меньшей степени, чем объекты из других классов. Но при этом порядковые шкалы не могут ответить на вопрос, на сколько (во сколько раз) это свойство выражено сильнее у объектов из одного класса, чем у объектов из другого класса. Примерами шкал порядка могут служить уровень образования, военные и академические звания, тип поселения (большой - средний - малый город - село), некоторые естественнонаучные шкалы (твердость минералов, сила шторма, бонитет лесопосадок). Так, можно сказать, что 6-балльный шторм заведомо сильнее, чем 4-балльный, но нельзя определить на сколько он сильнее; выпускник университета имеет более высокий образовательный уровень, чем выпускник средней школы, но разница в уровне образования не поддается непосредственному И. Упорядоченные классы достаточно часто нумеруют в порядке возрастания (убывания) измеряемого признака. Однако в силу того, что различия в значениях признака точному И. не поддаются, к шкалам порядка, также как к номинальным шкалам, действия арифметики не применяют. Исключение составляют оценочные шкалы, при использовании которых объект получает (или сам выставляет) оценки, исходя из определенного числа баллов. К таким шкалам относятся, например, школьные оценки, для которых считается вполне допустимым рассчитывать, например, средний балл по аттестату зрелости. Строго говоря, подобные шкалы являются частным случаем шкалы порядка, так как нельзя определить, на сколько знания "отличника" больше, чем знания "троечника", но в силу некоторых теоретических соображений с ними часто обращаются, как со шкалами более высокого ранга - шкалами интервалов. Другим частным случаем шкалы порядка является ранговая шкала, применяемая обычно в тех случаях, когда признак заведомо не поддается объективному И. (например, красота или степень неприязни), или когда порядок объектов более важен, чем точная величина различий между ними (места, занятые в спортивных соревнованиях). В таких случаях эксперту иногда предлагают проранжировать по определенному критерию некий список объектов, качеств, мотивов и т.п. В силу того, что символы, присваиваемые объектам в соответствии с порядковыми и номинальными шкалами, не обладают числовыми свойствами, даже если записываются с помощью цифр, эти два типа шкал получили общее название качественных в отличие от количественных шкал интервалов и отношений. Шкалы интервалов и отношений имеют общее свойство, отличающее их от качественных шкал: они предполагают не только определенный порядок между объектами или их классами, но и наличие некоторой единицы И., позволяющей определять, на сколько значение признака у одного объекта больше или меньше, чем у другого. Другими словами, на обеих количественных шкалах, помимо отношений тождества и порядка, определено отношение разности, к ним можно применять арифметические действия сложения и вычитания. Естественно, что символы, приписываемые объектам в соответствии с количественными измерительными шкалами, могут быть только числами. Основное различие между этими двумя шкалами состоит в том, что шкала отношений имеет абсолютный нуль, не зависящий от произвола наблюдателя и соответствующий полному отсутствию измеряемого признака, а на шкале интервалов нуль устанавливается произвольно или в соответствии с некоторыми условными договоренностями. Примерами шкалы интервалов являются календарное время, температурные шкалы Цельсия и Фаренгейта. Шкала оценок с заданным количеством баллов часто рассматривается как интервальная в предположении, что минимальное и максимальное положения на шкале соответствуют некоторым крайним оценкам или позициям, и интервалы между баллами шкалы имеют одинаковую длину. К шкалам отношений относится абсолютное большинство измерительных шкал, применяемых в науке, технике и быту: рост и вес, возраст, расстояние, сила тока, время (длительность промежутка между двумя событиями), температура по Кельвину (абсолютный нуль). Шкала отношений является единственной шкалой, на которой определено отношение отношения, то есть разрешены арифметические действия умножения и деления и, следовательно, возможен ответ на вопрос, во сколько раз одно значение больше или меньше другого. Количественные шкалы делятся на дискретные и непрерывные. Дискретные показатели измеряются в результате счета: число детей в семье, количество решенных задач и т.п. Непрерывные шкалы предполагают, что измеряемое свойство изменяется непрерывно, и при наличии соответствующих приборов и средств могло бы быть измерено с любой необходимой степенью точности. Результаты И. непрерывных показателей довольно часто выражаются целыми числами (например, шкала IQ для И. интеллекта) , но это связано не с природой самих показателей, а с характером измерительных процедур. Различают первичные и вторичные И. Первичные получаются в результате непосредственного И.: длина и ширина прямоугольника, число родившихся и умерших за год, ответ на вопрос теста, оценка на экзамене. Вторые являются результатом некоторых манипуляций с первичными И., обычно с помощью неких логико-математических конструкций: площадь прямоугольника, демографические коэффициенты смертности, рождаемости и естественного прироста, результаты тестирования, зачисление или незачисление в институт по результатам вступительных экзаменов. Для проведения И. в естественных и точных науках, в быту применяются специальные измерительные инструменты, которые во многих случаях представляют собой довольно сложные приборы. Качество И. определяется точностью, чувствительностью и надежностью инструмента. Точностью инструмента называется его соответствие существующему в данной области стандарту (эталону). Чувствительность инструмента определяется величиной единицы И., например, в зависимости от природы объекта расстояние может измеряться в микронах, сантиметрах или километрах. Надежностью называется способность инструмента к воспроизведению результатов И. в пределах чувствительности шкалы. В гуманитарных и общественных дисциплинах (за исключением экономики и демографии) большинство показателей не поддаются непосредственному И. с помощью традиционных технических средств. Вместо них применяются всевозможные анкеты, тесты, стандартизированные интервью и т.п., получившие общее название измерительного инструментария. Кроме очевидных проблем точности, чувствительности и надежности, для гуманитарного инструментария существует также достаточно острая проблема валидности - способности измерять именно то свойство личности, которое предполагается его автором. О.В. Терещенко

Если сравнить плоский лист бумаги и коробку, то мы увидим, что лист бумаги имеет длину и ширину, но не имеет глубины. Коробка же имеет длину, ширину и глубину.

Привычный для нас мир состоит из трёх измерений, однако давайте представим себе существование в двухмерном пространстве. В таком случае всё будет иметь вид рисунков на листе бумаги. Объекты смогут двигаться в любом направлении по поверхности этой бумаги, но подняться или опуститься на поверхность этой самой бумаги будет невозможно.

Представим себе квадрат, нарисованный в двухмерном пространстве - никакой объект не сможет выбраться за пределы квадрата, если только в нём нет отверстия, либо дырки. Перемещение под и над квадратом будет невозможным.

Что такое четвертое измерение

Другое дело в мире трёхмерном - нарисовав вокруг любого объекта квадрат, ничего не стоит затем этому самому объекту перешагнуть через него или подлезть. А теперь представим, что объект помещён внутрь куба или, к примеру, в комнату с потолком, полом и четырьмя плотными стенами. Никакой объект не сможет выбраться из комнаты, при условии, что в ней нет никаких отверстий.

Конечно же, всё это достаточно ясно и понятно. Также понятно и то, что практически все явления можно объяснить с позиции трёхмерного мира. Например, просто и понятно, почему жидкость может быть помещена в кувшин или почему собака может жить в будке.

Стоит теперь рассмотреть паранормальные явления - материализацию и дематериализацию. Известный экстрасенс, Чарльз Бейли мог материализовать сотни предметов в железной клетке в присутствии многочисленных, скептически настроенных свидетелей. Вполне возможно, предметы проходили между прутьями железной клетки, и это абсолютно необъяснимо с точки зрения трёхмерного мира.

Чтобы объяснить подобные явления, была выдвинута гипотеза, что существует четвёртое измерение пространства, недоступное при обычных обстоятельствах. Однако время от времени объекты получают возможность входить и выходить из четвёртого измерения.

Трансцендентная физика

Существует особая работа под названием “Трансцендентная физика”, посвящённая исследованию концепции четвёртого измерения и написанная Иоганном Карлом Фридрихом Зеллнером. В своём труде автор взял в качестве примера явления, создаваемые экстрасенсом Генри Слейдом. Тому удавалось заставлять некоторый объект совсем исчезнуть, а затем сделать так, чтобы этот самый объект появился где-нибудь в другом месте. Вдобавок, он мог материализовать два сплошных кольца вокруг ножки стола.

Через некоторое время Слейд был посажен в тюрьму за мошенничество, и это нанесло непоправимый урон репутации доктора Зеллнера. Тем не менее, сегодня это кажется несущественным, поскольку Зеллнер смог предложить миру тщательно оформленную теорию. К тому же под вопросом остаётся мошенничество Слейда.

Выдержка из “Трансцендентной физики”:

“Среди доказательств нет ничего более убедительного и существенного, чем перенос материальных тел из замкнутого пространства. Хотя наша трёхмерная интуиция не может допустить, чтобы в замкнутом пространстве открылся нематериальный выход, четырёхмерное пространство предоставляет такую возможность. Таким образом, перенос тела в этом направлении может быть осуществлён без воздействия на трёхмерные материальные стены. Так как у нас, трёхмерных существ, отсутствует так называемая интуиция четырёхмерного пространства, мы можем лишь сформировать его концепцию путём аналогии из низшей области пространства. Представьте на поверхности двухмерную фигуру: с каждой стороны начерчена линия, а внутри помещающийся объект. Движением только по поверхности объект не сможет выбраться за пределы этого двумерного замкнутого пространства, если только в линии не будет обрыва”.