В чем измеряется число частиц вещества. Как решать задачи по химии, готовые решения

Количество вещества. Моль — единица количества вещества. Число Авогадро

Помимо рассмотренных ранее абсолютной и относительной массы атомов и молекул, в химии большое значение имеет особая величина — количество вещества. Количество вещества определяется числом структурных единиц (атомов, молекул, ионов или других частиц) этого вещества. Количество вещества обозначается буквой ν. Вы уже знаете, что любая физическая величина имеет свою единицу измерения. Например, длину тела измеряют в метрах, массу вещества — в килограммах. А как измеряют количество вещества? Для измерения количества вещества существует особая единица — моль.

Моль — это количество вещества, содержащее столько частиц (атомов, молекул или других), сколько содержится атомов углерода в 0,012 кг (т.е. 12 г углерода. Это означает, что один моль цинка, один моль алюминия, один моль углерода содержат одно и то же число атомов. Также это означает, что один моль молекулярного кислорода, один моль воды содержат одно и то же число молекул. Как в первом, так и во втором случаях число частиц (атомов, молекул), которое содержится в одном моль, равно числу атомов в одном моль углерода. Экспериментально установлено, что один моль вещества содержит 6,02 · 1023 частиц (атомов, молекул или других). Таким образом, моль — количество вещества, которое содержит 6,02 · 1023 частиц, из которых состоит эта вещество. Если вещество состоит из атомов (например, цинк, алюминий и др.), то один моль этого вещества — это 6,02 · 1023 ее атомов. Если вещество состоит из молекул (например, кислород, вода и другие), то один моль этого вещества — это 6,02 · 1023 ее молекул. Эта величина 6,02 · 1023 названа в честь известного итальянского ученого Амедео Авогадро «постоянной Авогадро» и обозначается NA. Число Авогадро показывает число частиц в одном моль вещества, поэтому могло бы иметь размерность «частиц / моль». Однако поскольку частицы могут быть разными, слово «частицы» опускается и вместо него в размерность числа Авогадро записывается единица: «1/моль» или «моль-1». Таким образом: NA = 6,02 · 1023 .

Число Авогадро очень велико. Сравним: если собрать 6,02 · 1023 шаров, имеющих радиус 14 сантиметров, то их суммарный объем составит примерно такой же объем, который занимает вся наша планета Земля.

Для определения числа атомов (молекул) в определенном количестве вещества необходимо воспользоваться следующей формулой: N = ν · NA,

где N — число частиц (атомов или молекул).

Например, определим количество атомов алюминия, содержащиеся в 2 моль вещества алюминия: N (Al) = ν (Al) · NA.

N (Al) = 2 моль · 6,02 · 1023 = 12,04 · 1023 (атомов).

Кроме того, можно определить количество вещества по известным числом атомов (молекул):

Стехиометрия - количественные соотношения между вступающими в реакцию веществами.

Если реагенты вступают в химическое взаимодействие в строго определенных количествах, а в результате реакции образуются вещества, количество которых можно расчитать, то такие реакции называются стехиометрическими .

Законы стехиометрии:

Коэффициенты в химических уравнениях перед формулами химических соединений называются стехиометрическими .

Все расчёты по химическим уравнениям основаны на использовании стехиометрических коэффициентов и связаны с нахождением количеств вещества (чисел молей).

Количество вещества в уравнении реакции (число молей) = коэффициенту перед соответствующей молекулой.

N A =6,02×10 23 моль -1 .

η - отношение реальной массы продукта m p к теоретически возможной m т, выраженное в долях единицы или в процентах.

Если в условии выход продуктов реакции не указан, то в расчетах его принимают равным 100% (количественный выход).

Схема расчёта по уравнениям химических реакций:

  1. Составить уравнение химической реакции.
  2. Над химическими формулами веществ написать известные и неизвестные величины с единицами измерения.
  3. Под химическими формулами веществ с известными и неизвестными записать соответствующие значения этих величин, найденные по уравнению реакций.
  4. Составить и решить пропорцию.

Пример. Вычислить массу и количество вещества оксида магния, образовавшегося при полном сгорании 24 г магния.

Дано:

m (Mg ) = 24 г

Найти:

ν ( MgO )

m ( MgO )

Решение:

1. Составим уравнение химической реакции:

2Mg + O 2 = 2MgO.

2. Под формулами веществ укажем количество вещества (число молей), которое соответствует стехиометрическим коэффициентам:

2Mg + O 2 = 2MgO

2 моль 2 моль

3. Определим молярную массу магния:

Относительная атомная масса магния Ar (Mg) = 24.

Т.к. значение молярной массы равно относительной атомной или молекулярной массе, то M (Mg) = 24 г/моль.

4. По массе вещества, заданной в условии, вычислим количество вещества:

5. Над химической формулой оксида магния MgO , масса которого неизвестна, ставим x моль , над формулой магния Mg пишем его молярную массу:

1 моль x моль

2Mg + O 2 = 2MgO

2 моль 2 моль

По правилам решения пропорции:

Количество оксида магния ν (MgO) = 1 моль.

7. Вычислим молярную массу оксида магния:

М (Mg) =24 г/моль,

М (О) =16 г/моль.

M (MgO) = 24 + 16 = 40 г/моль.

Рассчитываем массу оксида магния:

m (MgO) = ν (MgO) ×M (MgO) = 1 моль×40 г/моль = 40 г.

Ответ: ν (MgO) = 1 моль; m (MgO) = 40 г.

Понятие моль используют для измерения химических веществ. Выясним особенности этой величины, приведем примеры расчетных заданий с ее участием, определим важность данного термина.

Определение

Моль в химии - это единица вычисления. Она представляет собой количество определенного вещества, в котором находится столько структурных единиц (атомов, молекул), сколько содержится в 12 граммах атома углерода.

Число Авогадро

Количество вещества связано с числом Авогадро, которое составляет 6*10^23 1/моль. Для веществ молекулярного строения считают, что один моль включает именно число Авогадро. Если нужно посчитать число молекул, содержащееся в 2 молях воды, то необходимо умножить 6*10^23 на 2 , получаем 12*10^23 штук. Давайте рассмотрим, какую роль играет моль в химии.

Количество вещества

Вещество, которое состоит из атомов, содержит число Авогадро. Например, для атома натрия это 6*10*23 1/моль. Каково его обозначение? Моль в химии обозначают греческой буквой «ню» или латинской «n». Для проведения математических вычислений, связанных с количеством вещества, используют математическую формулу:

n=N/N(A), где n - количество вещества, N(A) - число Авогадро, N - количество структурных частиц вещества.

При необходимости можно вычислить число атомов (молекул):

Фактическая масса моля называется молярной. Если количество вещества определяют в молях, то величина молярной массы имеет единицы измерения г/моль. В численном выражении она соответствует значению относительной молекулярной массы, которую можно определить путем суммирования относительных атомных масс отдельных элементов.

Например, для того чтобы определить молярную массу молекулы углекислого газа, необходимо провести следующие расчеты:

M (CO2)=Ar(C)+2Ar(O)=12+2*16=44

При вычислении молярной массы оксида натрия получаем:

M (Na2O)=2*Ar(Na)+Ar(O)=2*23+16=62

При определении молярной массы серной кислоты суммируем две относительные атомные массы водорода с одной атомной массой серы и четырьмя относительными атомными массами кислорода. Их значения всегда можно найти в периодической таблице Менделеева. В итоге получаем 98.

Моль в химии позволяет проводить разнообразные расчеты, связанные с химическими уравнениями. Все типовые расчетные задачи в неорганической и органической химии, которые предполагают нахождение массы и объема веществ, решаются именно через моли.

Примеры расчетных задач

Молекулярная формула любого вещества указывает на количество молей каждого элемента, включенного в его состав. Например, один моль фосфорной кислоты содержит три моля атомов водорода, один моль атомов фосфора и четыре моля атомов кислорода. Все достаточно просто. Моль в химии является переходом из микромира молекул и атомов в макросистему с килограммами и граммами.

Задача 1. Определите число молекул воды, содержащихся в 16,5 молях.

Для решения используем связь между числом Авогадро (количество вещества). Получаем:

16,5*6,022*1023 = 9,9*1024 молекул.

Задача 2. Рассчитайте число молекул, содержащихся в 5 г углекислого газа.

Сначала необходимо вычислить молярную массу данного вещества, воспользовавшись ее связью с относительной молекулярной массой. Получаем:

N=5/44*6,023*1023=6,8*1023 молекул.

Алгоритм задач на химическое уравнение

При вычислении массы или продуктов реакции по уравнению используют определенный алгоритм действий. Сначала определяют, какое из исходных веществ в недостатке. Для этого находят их количество в молях. Далее составляют уравнение процесса, обязательно расставляют стереохимические коэффициенты. Над веществами записывают исходные данные, под ними указывают количество вещества, взятое в молях (по коэффициенту). В случае необходимости осуществляют перевод единиц измерения, пользуясь формулами. Далее составляют пропорцию и решают ее математическим способом.

Если предлагается более сложная задача, то предварительно вычисляют массу чистого вещества, убирая примеси, потом уже приступают к определению его количества (в молях). Ни одна задача в химии, связанная с уравнением реакции, не решается без такой величины, как моль. Кроме того с помощью данного термина, легко можно определить количество молекул или атомов, воспользовавшись для таких вычислений постоянным числом Авогадро. Расчетные задания включены в тестовые вопросы по химии для выпускников основной и средней общеобразовательной школы.

Моль, молярная масса

В химических процессах участвуют мельчайшие частицы – молекулы, атомы, ионы, электроны. Число таких частиц даже в малой порции вещества очень велико. Поэтому, чтобы избежать математических операций с большими числами, для характеристики количества вещества, участвующего в химической реакции, используется специальная единица – моль .

Моль - это такое количество вещества, в котором содержится определенное число частиц (молекул, атомов, ионов), равное постоянной Авогадро

Постоянная Авогадро N A определяется как число атомов, содержащееся в 12 г изотопа 12 С:

Таким образом, 1 моль любого вещества содержит 6,02 10 23 частиц этого вещества.

1 моль кислорода содержит 6,02 10 23 молекул O 2 .

1 моль серной кислоты содержит 6,02 10 23 молекул H 2 SO 4 .

1 моль железа содержит 6,02 10 23 атомов Fe.

1 моль серы содержит 6,02 10 23 атомов S.

2 моль серы содержит 12,04 10 23 атомов S.

0,5 моль серы содержит 3,01 10 23 атомов S.

Исходя из этого, любое количество вещества можно выразить определенным числом молей ν (ню ). Например, в образце вещества содержится 12,04 10 23 молекул. Следовательно, количество вещества в этом образце составляет:

В общем виде:

где N – число частиц данного вещества;
N а – число частиц, которое содержит 1 моль вещества (постоянная Авогадро).

Молярная масса вещества (M) – масса, которую имеет 1 моль данного вещества.
Эта величина, равная отношению массы m вещества к количеству вещества ν , имеет размерность кг/моль или г/моль . Молярная масса, выраженная в г/моль, численно равна относительной относительной молекулярной массе M r (для веществ атомного строения – относительной атомной массе A r).
Например, молярная масса метана CH 4 определяется следующим образом:

М r (CH 4) = A r (C) + 4 A r (H) = 12+4 =16

M(CH 4)=16 г/моль, т.е. 16 г CH 4 содержат 6,02 10 23 молекул.

Молярную массу вещества можно вычислить, если известны его масса m и количество (число молей) ν , по формуле:


Соответственно, зная массу и молярную массу вещества, можно рассчитать число его молей:


или найти массу вещества по числу молей и молярной массе:

m = ν M

Необходимо отметить, что значение молярной массы вещества определяется его качественным и количественным составом, т.е. зависит от M r и A r . Поэтому разные вещества при одинаковом количестве молей имеют различные массы m .


Пример
Вычислить массы метана CH 4 и этана С 2 H 6 , взятых в количестве ν = 2 моль каждого.

Решение
Молярная масса метана M(CH 4) равна 16 г/моль;
молярная масса этана M(С 2 Н 6) = 2 12+6=30 г/моль.
Отсюда:

m (CH 4) = 2 моль 16 г/моль = 32 г ;
m (С 2 Н 6) = 2 моль 30 г/моль = 60 г .

Таким образом, моль – это порция вещества, содержащая одно и то же число частиц, но имеющая разную массу для разных веществ, т.к. частицы вещества (атомы и молекулы) не одинаковы по массе.

n (CH 4) = n (С 2 Н 6), но m (CH 4) < m (С 2 Н 6)

Вычисление ν используется практически в каждой расчетной задаче.

Взаимосвязь:

Образцы решения задач

Задача №1. Вычислите массу (г) железа, взятого количеством вещества

0, 5 моль?

Дано:ν (Fe )=0,5 моль

Найти: m (Fe ) - ?

Решение:

m = M · ν

M (Fe ) = Ar (Fe ) = 56 г/моль (Из периодической системы)

m (Fe ) = 56 г/моль · 0,5 моль = 28 г

Ответ: m (Fe ) =28 г

Задача №2. Вычислите массу (г) 12,04· 10 23 молекул оксида кальция Ca О ?

Дано: N (CaO )= 12,04 * 10 23 молекул

Найти: m (СaO ) - ?

Решение:

m = M · ν , ν= N /N a ,

следовательно,формула для расчёта

m = M · (N/N a)

M(CaO) = Ar(Ca) + Ar(O) = 40 + 16 = 56 г/ моль

m = 56 г/моль · (12,04 * 10 23 /6.02 · 10 23 1/моль) = 112 г

Решение о необходимости ведения такой тетради пришло не сразу, а постепенно, с накоплением опыта работы.

Вначале это было место в конце рабочей тетради – несколько страниц для записи наиболее важных определений. Затем туда же были вынесены наиболее важные таблицы. Потом пришло осознание того, что большинству учеников для того, чтобы научиться решать задачи, необходимы строгие алгоритмические предписания, которые они, прежде всего, должны понять и запомнить.

Вот тогда и пришло решение о ведении, кроме рабочей тетради, еще одной обязательной тетради по химии – химического словаря. В отличие от рабочих тетрадей, которых может быть даже две в течение одного учебного года, словарь - это единая тетрадь на весь курс обучения химии. Лучше всего, если эта тетрадь будет иметь 48 листов и прочную обложку.

Материал в этой тетради мы располагаем следующим образом: в начале – наиболее важные определения, которые ребята выписывают из учебника или записывают под диктовку учителя. Например, на первом уроке в 8-м классе это определение предмета “химия”, понятие “химические реакции”. В течение учебного года в 8-м классе их накапливается более тридцати. По этим определениям на некоторых уроках я провожу опросы. Например, устный вопрос по цепочке, когда один ученик задает вопрос другому, если тот ответил правильно, значит, уже он задает вопрос следующему; или, когда одному ученику задают вопросы другие ученики, если он не справляется с ответом, значит, отвечают сами. По органической химии это в основном определения классов органических веществ и главных понятий, например, “гомологи”, “изомеры” и др.

В конце нашей справочной тетради представлен материал в виде таблиц и схем. На последней странице располагается самая первая таблица “Химические элементы. Химические знаки”. Затем таблицы “Валентность”, “Кислоты”, “Индикаторы”, “Электрохимический ряд напряжений металлов”, “Ряд электроотрицательности”.

Особенно хочу остановиться на содержании таблицы “Соответствие кислот кислотным оксидам”:

Соответствие кислот кислотным оксидам
Кислотный оксид Кислота
Название Формула Название Формула Кислотный остаток, валентность
оксид углерода (II) CO 2 угольная H 2 CO 3 CO 3 (II)
оксид серы (IV) SO 2 сернистая H 2 SO 3 SO 3 (II)
оксид серы (VI) SO 3 серная H 2 SO 4 SO 4 (II)
оксид кремния (IV) SiO 2 кремниевая H 2 SiO 3 SiO 3 (II)
оксид азота (V) N 2 O 5 азотная HNO 3 NO 3 (I)
оксид фосфора (V) P 2 O 5 фосфорная H 3 PO 4 PO 4 (III)

Без понимания и запоминания этой таблицы затрудняется составление учениками 8-х классов уравнений реакций кислотных оксидов со щелочами.

При изучении теории электролитической диссоциации в конце тетради записываем схемы и правила.

Правила составления ионных уравнений:

1. В виде ионов записывают формулы сильных электролитов, растворимых в воде.

2. В молекулярном виде записывают формулы простых веществ, оксидов, слабых электролитов и всех нерастворимых веществ.

3. Формулы малорастворимых веществ в левой части уравнения записывают в ионном виде, в правой – в молекулярном.

При изучении органической химии записываем в словарь обобщающие таблицы по углеводородам, классам кислород - и азотсодержащих веществ, схемы по генетической связи.

Физические величины
Обозначение Название Единицы Формулы
количество вещества моль = N / N A ; = m / М;

V / V m (для газов)

N A постоянная Авогадро молекулы, атомы и другие частицы N A = 6,02 10 23
N число частиц молекулы,

атомы и другие частицы

N = N A
M молярная масса г/моль, кг/кмоль M = m / ; / М/ = М r
m масса г, кг m = M ; m = V
V m молярный объём газа л / моль, м 3 /кмоль Vm = 22,4 л / моль=22,4 м 3 /кмоль
V объём л, м 3 V = V m (для газов) ;
плотность г / мл; = m / V;

M / V m (для газов)

За 25 – летний период преподавания химии в школе мне пришлось работать по разным программам и учебникам. При этом всегда удивляло то, что практически ни один учебник не учит решать задачи. В начале изучения химии для систематизации и закрепления знаний в словаре мы с учениками составляем таблицу “Физические величины” с новыми величинами:

При обучении учащихся способам решения расчётных задач очень большое значение придаю алгоритмам. Я считаю, что строгие предписания последовательности действий позволяют слабому ученику разобраться в решении задач определённого типа. Для сильных учеников - это возможность выхода на творческий уровень своего дальнейшего химического образования и самообразования, так как для начала нужно уверенно овладеть сравнительно небольшим числом стандартных приёмов. На базе этого разовьётся умение правильно их применять на разных стадиях решения более сложных задач. Поэтому алгоритмы решения расчётных задач составлены мною для всех типов задач школьного курса и для факультативных занятий.

Приведу примеры некоторых из них.

Алгоритм решения задач по химическим уравнениям.

1. Записать кратко условие задачи и составить химическое уравнение.

2. Над формулами в химическом уравнении надписать данные задачи, под формулами пописать число моль (определяют по коэффициенту).

3. Найти количество вещества, масса или объём которого даны в условии задачи, по формулам:

M / M; = V / V m (для газов V m = 22,4 л / моль).

Полученное число надписать над формулой в уравнении.

4. Найти количество вещества, масса или объём которого неизвестны. Для этого провести рассуждение по уравнению: сравнить число моль по условию с числом моль по уравнению. При необходимости составить пропорцию.

5. Найти массу или объём по формулам: m = M ; V = V m .

Данный алгоритм – это основа, которую должен освоить ученик, чтобы в дальнейшем он смог решать задачи по уравнениям с различными усложнениями.

Задачи на избыток и недостаток.

Если в условии задачи известны количества, массы или объёмы сразу двух реагирующих веществ, то это задача на избыток и недостаток.

При её решении:

1. Нужно найти количества двух реагирующих веществ по формулам:

M /M; = V/V m .

2. Полученные числа моль надписать над уравнением. Сравнив их с числом моль по уравнению, сделать вывод о том, какое вещество дано в недостатке.

3. По недостатку производить дальнейшие расчёты.

Задачи на долю выхода продукта реакции, практически полученного от теоретически возможного.

По уравнениям реакций проводят теоретические расчёты и находят теоретические данные для продукта реакции: теор. , m теор. или V теор. . При проведении реакций в лаборатории или в промышленности происходят потери, поэтому полученные практические данные практ. ,

m практ. или V практ. всегда меньше теоретически рассчитанных данных. Долю выхода обозначают буквой (эта) и рассчитывают по формулам:

(эта) = практ. / теор. = m практ. / m теор. = V практ. / V теор.

Выражают её в долях от единицы или в процентах. Можно выделить три типа задач:

Если в условии задачи известны данные для исходного вещества и доля выхода продукта реакции, при этом нужно найти практ. , m практ. или V практ. продукта реакции.

Порядок решения:

1. Произвести расчёт по уравнению, исходя из данных для исходного вещества, найти теор. , m теор. или V теор. продукта реакции;

2. Найти массу или объём продукта реакции, практически полученного, по формулам:

m практ. = m теор. ; V практ. = V теор . ; практ. = теор. .

Если в условии задачи известны данные для исходного вещества и практ. , m практ. или V практ. полученного продукта, при этом нужно найти долю выхода продукта реакции.

Порядок решения:

1. Произвести расчёт по уравнению, исходя из данных для исходного вещества, найти

Теор. , m теор. или V теор. продукта реакции.

2. Найти долю выхода продукта реакции по формулам:

Практ. / теор. = m практ. / m теор. = V практ. /V теор.

Если в условии задачи известны практ. , m практ. или V практ. полученного продукта реакции и доля выхода его, при этом нужно найти данные для исходного вещества.

Порядок решения:

1. Найти теор., m теор. или V теор. продукта реакции по формулам:

Теор. = практ. / ; m теор. = m практ. / ; V теор. = V практ. / .

2. Произвести расчёт по уравнению, исходя из теор. , m теор. или V теор. продукта реакции и найти данные для исходного вещества.

Конечно, эти три типа задач мы рассматриваем постепенно, отрабатываем умения решения каждого из них на примере целого ряда задач.

Задачи на смеси и примеси.

Чистое вещество – это то, которого в смеси больше, остальное – примеси. Обозначения: масса смеси – m см., масса чистого вещества – m ч.в., масса примесей – m прим. , массовая доля чистого вещества - ч.в.

Массовую долю чистого вещества находят по формуле: ч.в. = m ч.в. / m см. , выражают её в долях от единицы или в процентах. Выделим 2 типа задач.

Если в условии задачи дана массовая доля чистого вещества ил массовая доля примесей, значит, при этом дана масса смеси. Слово “технический” тоже означает наличие смеси.

Порядок решения:

1. Найти массу чистого вещества по формуле: m ч.в. = ч.в. m см.

Если дана массовая доля примесей, то предварительно нужно найти массовую долю чистого вещества: ч.в. = 1 - прим.

2. Исходя из массы чистого вещества, производить дальнейшие расчёты по уравнению.

Если в условии задачи дана масса исходной смеси и n , m или V продукта реакции, при этом нужно найти массовую долю чистого вещества в исходной смеси или массовую долю примесей в ней.

Порядок решения:

1. Произвести расчёт по уравнению, исходя из данных для продукта реакции, и найти n ч.в. и m ч.в.

2. Найти массовую долю чистого вещества в смеси по формуле: ч.в. = m ч.в. / m см. и массовую долю примесей: прим. = 1 - ч.в

Закон объёмных отношений газов.

Объёмы газов относятся так же, как их количества веществ:

V 1 / V 2 = 1 / 2

Этот закон применяют при решении задач по уравнениям, в которых дан объём газа и нужно найти объём другого газа.

Объёмная доля газа в смеси.

Vг / Vсм, где (фи) – объёмная доля газа.

Vг – объём газа, Vcм – объём смеси газов.

Если в условии задачи даны объёмная доля газа и объём смеси, то, прежде всего, нужно найти объём газа: Vг = Vсм.

Объём смеси газов находят по формуле: Vсм = Vг / .

Объём воздуха, затраченный на сжигание вещества, находят через объём кислорода, найденный по уравнению:

Vвозд. = V(О 2) / 0,21

Вывод формул органических веществ по общим формулам.

Органические вещества образуют гомологические ряды, которые имеют общие формулы. Это позволяет:

1. Выражать относительную молекулярную массу через число n.

M r (C n H 2n + 2) = 12 n + 1 (2n + 2) = 14n + 2.

2. Приравнивать M r , выраженную через n, к истинной M r и находить n.

3. Составлять уравнения реакций в общем виде и производить по ним вычисления.

Вывод формул веществ по продуктам сгорания.

1. Проанализировать состав продуктов сгорания и сделать вывод о качественном составе сгоревшего вещества: Н 2 О -> Н, СО 2 -> С, SO 2 -> S, P 2 O 5 -> P, Na 2 CO 3 -> Na, C.

Наличие кислорода в веществе требует проверки. Обозначить индексы в формуле через x, y, z. Например, СxНyОz (?).

2. Найти количество веществ продуктов сгорания по формулам:

n = m / M и n = V / Vm.

3. Найти количества элементов, содержавшихся в сгоревшем веществе. Например:

n (С) = n (СО 2), n (Н) = 2 ћ n (Н 2 О), n (Na) = 2 ћ n (Na 2 CO 3), n (C) = n (Na 2 CO 3) и т.д.

Vm = г / л 22, 4 л / моль; r = m / V.

b) если известна относительная плотность: М 1 = D 2 М 2 , M = D H2 2, M = D O2 32,

M = D возд. 29, М = D N2 28 и т.д.

1 способ: найти простейшую формулу вещества (см. предыдущий алгоритм) и простейшую молярную массу. Затем сравнить истинную молярную массу с простейшей и увеличить индексы в формуле в нужное число раз.

2 способ: найти индексы по формуле n = (э) Mr / Ar(э).

Если неизвестна массовая доля одного из элементов, то её нужно найти. Для этого из 100 % или из единицы вычесть массовую долю другого элемента.

Постепенно в курсе изучения химии в химическом словаре происходит накопление алгоритмов решения задач разных типов. И ученик всегда знает, где ему найти нужную формулу или нужные сведения для решения задачи.

Многим учащимся нравится ведение такой тетради, они сами дополняют её различными справочными материалами.

Что касается факультативных занятий, то мы с учениками тоже заводим отдельную тетрадь для записи алгоритмов решения задач, выходящих за рамки школьной программы. В этой же тетради для каждого типа задач записываем 1-2 примера, остальные задачи они решают уже в другой тетради. И, если вдуматься, то среди тысяч разных задач, встречающихся на экзамене по химии во всех ВУЗах, можно выделить задачи 25 – 30 различных типов. Конечно, среди них – множество вариаций.

В разработке алгоритмов решения задач на факультативных занятиях мне во многом помогло пособие А.А. Кушнарёва. (Учимся решать задачи по химии, - М., Школа – пресс, 1996).

Умение решать задачи по химии это основной критерий творческого усвоения предмета. Именно через решение задач различных уровней сложности может быть эффективно усвоен курс химии.

Если ученик имеет чёткое представление о всех возможных типах задач, прорешал большое количество задач каждого типа, то ему по силам справиться со сдачей экзамена по химии в виде ЕГЭ и при поступлении в вузы.