Пример расчета свайного под 9 этажный дом. Расчет нагрузки фундамента на винтовых сваях

На страницах нашего портала подробно рассмотрены варианты возведения ленточного, плитного, столбчатого фундаментов. Однако, нередко обстоятельства складываются так, что ни одна из перечисленных выше схем не может быть реализована на практике в силу тех или иных причин. Сложный рельеф на участке строительства, недостаточная несущая способность поверхностных слоёв грунта или очень большая глубина его зимнего промерзания, наличие верховодки – любая из этих особенностей может или сделать невозможным применение наиболее широко распространенных технологий, или чрезвычайно усложнить конструкцию фундамента, что, естественно, сопровождается резким удорожанием общей стоимости его строительства. Оптимальным же вариантом может стать фундамент свайного типа.

Любое основание здания требует предварительного проектирования. И если для строительства был выбран свайный фундамент расчет количества свай и их расположение становятся ключевыми параметрами планирования. Безусловно, проектно-изыскательские работы всегда правильнее будет доверить профессионалам. Однако, подобные расчеты, пусть в несколько упрощенной форме, можно провести и собственными силами. Это поможет, например, при возведении построек хозяйственного назначения, а также и для предварительной оценки масштабов работ при планировании строительства загородного дома.

Чаще всего в практике частного строительства применяются свайно-винтовые фундаменты, а в последнее время широкое распространение получает использование буронабивных бетонных свай – так называемая технология ТИСЭ. Хотя принцип расчета количества опор для возводимого здания – примерно одинаков, существенные различия все же имеются, так что эти два типа фундаментов будут рассмотрены по-отдельности. Сегодня – очередь именно свайно-винтового.

Свайно-винтовой фундамент представляет собой совокупность заглублённых (вкрученных) в грунт на расчётную глубину металлических свай, которые сверху связаны в единую конструкцию общим ростверком. Сваи оснащены лопастями, которые становятся не только «инструментом» для ввинчивания металлической опоры в толщу грунта – за счет своей площади лопасти при проходке уплотняют породу ниже себя и становятся надежной опорой, способной выдержать немалые нагрузки.

Такая технология позволяет пройти сквозь поверхностные слои почвы, неустойчивого грунта, так, чтобы, в конце концов, свая «нашла» себе стабильную породу на глубине, обычно – ниже уровня промерзания, чтобы свести к минимуму влияние сил морозного пучения. Мало того что лопасти сваи опираются на уплотнённый грунт – они еще и успешно противостоят усилиям, выдергивающим сваю вверх. Таким образом, при правильном расчете и монтаже, здание получает стабильное основание, в тех условиях, где другие типы фундаментов были бы бесполезны или же чрезвычайно сложны и дороги.

Внутренняя полость трубы-сваи чаще всего по всей высоте заполняется бетоном (без дополнительного армирования) – это позволяет создать защиту стенок от внутренней коррозии. Установленные сваи сверху обрезаются по нивелиру под один уровень в горизонтальной плоскости, к ним привариваются оголовки с монтажными площадками, на которых располагают ростверк, становящийся затем основой для дальнейшего возведения внешних стен и внутренних капитальных перемычек.

Ростверк же может монтироваться из различных материалов:

Иллюстрация Спецификация Область использования
1 – тело сваи (металлическая труба);
2 – лопастная часть;
3 – бетонное заполнение сваи;
4 – оголовок с монтажной площадкой;
5 – двутавровая балка.
6 – ростверк из швеллера. Каркасные, блочные или кирпичные стены, дома из бревна или бруса, постройки из металлических сэндвич-панелей.
7 – обвязка из деревянного бруса (или нижний венец);
8 – механическое крепление брусьев обвязки (уголок);
9 – штыревое соединение брусьев обвязки.
Каркасные дома, стены из бревна или бруса, легкие хозяйственные постройки.
10 – монолитный бетонный ростверк (в некоторых случаях – даже плита);
11 – связующая закладная армирующая конструкция.
Дома из кирпича, газобетонных блоков, стены из металлических сэндвич-панелей, каркасные, из бревен или бруса.

Такая конструкция обеспечивает равномерное распределение нагрузок по всем опорам и предопределяет основные достоинства свайно-винтового фундамента:

  • Минимальные сроки возведения – по подобному параметру свайно-винтовым фундаментам, наверное, нет равных. При согласованных действиях бригады, и если, конечно, грунт не «преподнесёт сюрпризов» типа непроходимой каменной гряды на глубине, работы по возведению полноценной основы под строительство дома могут занять буквально день – два. Полностью выпадают характерные для большинства иных фундаментов сроки ожидания полного созревания .

  • Очень часто возведение свайного фундамента можно провести самостоятельно, не прибегая к услугам специальной техники, что значительно удешевляет общую стоимость строительства.

Правда, если позволяет финансовая возможность, и есть желание избавить себя от нелегкого ручного труда, можно воспользоваться и услугами специальной установки для ввинчивания подобных свай. Работа пойдет еще быстрее и качественнее.

Цены на винтовые сваи

винтовые сваи


  • Строительство свайного фундамента возможно практически на всех типах грунтов, в том числе на заболоченных, торфяных участках – главное, чтобы лопастная часть достигла на глубине плотной породы, расположенной ниже уровня промерзания. При таком положении силы морозного вспучивания неспособны оказать сколь-нибудь значимого влияния на стабильность конструкции.
  • Свайно-винтовой фундамент – это одно из наиболее удачных решений при необходимости строительства на участке с пересеченным рельефом. Хотя винтовая часть всех свай должна расположиться на одном уровне по горизонтали, верхнюю их часть несложно подрезать по нивелиру, также выведя в единую плоскость перед связыванием ростверком.

  • При использовании качественно изготовленных свай, имеющих антикоррозионную обработку, такой фундамент должен прослужить не менее 50 лет.

Тем не менее, существуют у фундаментов подобного типа и определенные недостатки :

  • Определенные сложности в установке вплотную к ране возведенным зданиям, например, при строительстве пристройки. Проблема решается применением спецтехники.
  • Имеющиеся ограничения пол несущей способности винтовых свай. Впрочем, этот недостаток несущественен при ведении частного строительства – заложенных возможностей свай, при правильном их подборе, обычно вполне достаточно.
  • Нет возможности оборудовать полноценный подвал или цокольное помещение.
  • Наконец, самый главный недостаток – это действие коррозии на металлические сваи, которое способно существенно снизить их эксплуатационный ресурс. Безусловно, добросовестные производители предусматривают возможные меры для снижения подобного воздействия – применяются оцинкованные трубы, специальные полимерные покрытия. Однако, полностью исключить влияние коррозии сложно. Кроме того, оно может быть усилено неблагоприятным химическим составом грунтов, высокой вероятностью блуждающих токов из-за близкого расположения дома от электрических подстанций, шахт, высоковольтных линий электропередач или вышек сотовой связи, железнодорожной магистрали.

Кроме того, некоторые хозяева своими руками неосознанно «закладывают бомбу», подключая к вкрученным сваям контур . Нет слов, как заземление эта схема – вполне работоспособна. Но в этом то и беда – при любой нештатной ситуации с электроприборами ток пойдет через сваю, резко активизируя при этом процессы коррозии, особенно в областях сварных швов.

Однако, вернемся к теме нашей публикации. При качественном монтаже винтовых свай, правильной их расстановке и обвязке, нагрузка от здания должна распределяться по всем точкам опоры равномерно. Значит, для определения количества свай необходимо иметь два основополагающих параметра – это несущая способность опоры и суммарная нагрузка, которая будет создаваться на фундамент. Причем, здесь должна учитываться не только масса самого здания, но и эксплуатационные и иные внешние нагрузки.

Для начала разберемся со сваями – с выпускаемыми разновидностями и с допустимыми нагрузками на них.

Винтовые сваи и расчет допустимых нагрузок на них

Основные типоразмеры винтовых фундаментных свай

Винтовые сваи в наше время широко представлены в свободной продаже. Существует несколько типоразмеров, обычно применяющихся в индивидуальном строительстве. Различаются они диаметром ствола (трубы) и лопастей, стало быть, и своими несущими возможностями. Кроме того, сваи любого типоразмера выпускаются в довольно широком ассортименте длин, обычно от 1650 до 7000 мм, что позволяет подобрать нужный размер в зависимости от особенностей планируемого строительства.

Ниже в таблице приведены основные параметры свай модельного ряда СВС – с приваренными лопастями винтовой части. Эти модели – наиболее распространённые и доступные по цене. Для ориентира, будут приведены средние цены на сваи длиной 2500 мм.

Иллюстрация Краткое описание и предназначение модели Примерный уровень цен (длина 2500 мм)
СВС-57. Свая не отличается высокой несущей способностью – допустимая нагрузка до 800 кг.
Стандартная область применения – облегченные заборы, не обладающие парусностью, то есть из сетки-рабицы.
Чаще всего используются 4-метровые изделия, из расчета 2 метра заглубления и еще 2 – высота забора.
1300 руб. + 100 руб. за каждые дополнительные 500 мм длины.
Оголовок ОВС-57/200/200 – 260 руб./шт.
СВС-76 способны выдерживать нагрузку до 3000 кг, и поэтому могут применятся для строительства заборов и ограждений «глухого» типа, то есть обладающих парусностью (из профнастила, металлического или деревянного штакетника, шиферных листом, поликарбоната и т.п.)
Позволяют при необходимости создавать между опорами дополнительный ленточный фундамент для забора.
Наиболее часто используемый размер – 4000 мм.
1450 руб. + 100 руб. за каждые дополнительные 500 мм длины.
Оголовок ОВС-76/200/200 – 300 руб./шт.
СВС-89 с допустимой нагрузкой, доходящей до 4÷5 тонн.
Типичная сфера применения – строительство беседок, хозяйственных построек, гаражей.
Отлично подойдет для пристраивания веранды к дому.
Используется в качестве дополнительной опоры, например, при установке в доме печи или камина.
1500 руб.
Оголовок ОВС-89/200/200 – 300 руб./шт.
СВС-108 уже могут применяться при возведении жилых построек – домов из бруса, бревенчатых срубов или каркасных конструкций.
Допустимая нагрузка на опору может лежать в диапазоне от 5 до 9 тонн.
Отлично подходят для строительства на заболоченных и торфяных грунтах.
1700 руб.
Оголовок ОВС-108/200/200 – 300 руб./шт.
СВС-133 способны выдерживать нагрузки, доходящие до 10÷14 тонн.
Такие сваи используют для возведение фундаментов под строительство достаточно тяжелых домов из кирпичей или газобетонных блоков.
Допустимо использование монолитного ростверка и даже заливка плиты перекрытия первого этажа.
2250 руб.
ОВС-133/300/300 – 350 руб./шт

А вот теперь – очень важное замечание. Все представленные выше модели можно назвать «бюджетным вариантом» – они изготавливаются по технологии приваривания лопастей к телу трубы, и в этом кроется их основной недостаток.

Даже небольшое отклонение в геометрии при приваривании лопастей может давать нежелательный эффект отклонения сваи от вертикали при ее вкручивании в грунт. Кроме того, при экстремальных напряжениях, которые обязательно испытывает лопасть при вкручивании, зачастую случаются разрывы сварного шва – свая начинает просто проворачиваться на месте, и ни о какой несущей способности уже и речи не идет. Мало того, в практике использования подобных фундаментов известны случаи, когда под консолидированным воздействием уже упомянутой выше коррозии и внешней механической нагрузки попасть отрывалась по шву уже после нескольких лет эксплуатации. При этом свая также значительно теряет в своей несущей способности, дополнительная нагрузка падает на соседние опоры, и не исключается проседание этой части фундамента с деформацией ростверка, а значит и стен дома.


Если подходить к делу со всей серьёзностью, и тем более – в случае возведения не хозяйственной постройки или ограждения, а полноценного жилого дома, оптимальным решением станет использование свай с литым винтовым наконечником. Изготовленные из стали СТ-25 или СТ-35 методом точного литья в вакуумной среде, наконечники обладают выверенной геометрией спирали, более толстой лопастью, которой не будут страшны экстремальные нагрузки, а отсутствие сварных швов резко снижает уязвимость к коррозии. Устойчивость подобных наконечников к деформирующей нагрузке позволяет ввинчивать сваи даже в грунтах с мелкими камнями. При благоприятной физико-химической характеристике грунта и при условии правильного монтажа, фундамент с такими опорами может служить до 100 лет.

Правда, за это придется отдать несколько большую сумму. Так, стоимость одной сваи СВЛН-108/300/2500 (аббревиатура ЛН – литой наконечник) уже ориентировочно 2600 руб., а СВЛН-133/350/2500 – 3350 руб., то есть в среднем на треть дороже сварных.


При выборе любых винтовых свай необходимо проявлять особую внимательность к качеству изготовления. Беда в том, что в этой сфере подвизается немало полукустарных производителей, изделия которых не выдерживают никакой критики. Это касается и труб, и стали, используемой для наваривания лопастей, и качества выполнения сварных швов, и правильности геометрии винта, и антикоррозионного покрытия свай. Кстати, ушлые «леваки» освоили даже выпуск псевдо-литых наконечников, которые внешне могут мало отличаться от настоящих. Так что будьте крайне внимательны и никогда не стесняйтесь потребовать сертификационную документацию, которая должна сопровождать любую партию «легальной» продукции. В вопросах строительства фундамента полагаться «на авось» никак нельзя – ошибки могут очень многого стоить.

Указанными выше моделями разнообразие винтовых свай не ограничивается — просто были продемонстрированы наиболее распространенные и широко применяемые в частном строительстве варианты. А кроме этого, производятся специализированные сваи для каменистых грунтов, которые формой больше напоминают спираль самореза, для вечной мерзлоты – с дополнительной буровой коронкой, и другие. Для особо ответственных построек с большим удельным давлением на опоры применяются винтовые сваи с двумя рядами лопастей, разнесенными по высоте колонны. Это позволяет компенсировать горизонтальные подвижки грунта, исключить перекос при ввинчивании, повысить несущую способность сваи. Правда, для монтажа более сложных разновидностей, как правило, уже не обходится без специальной техники.

Допустимые нагрузки на винтовые сваи

После того как познакомились с характеристиками свай, можно переходить к рассмотрению важного вопроса – какой же несущей способностью они будут обладать, то есть какую допустимую нагрузку на них можно планировать.

Этот параметр напрямую зависит от таких критериев, как типоразмер сваи и особенности преобладающего несущего слоя грунта. Если с первым показателем – всё относительно понятно, так как сваи выдерживаются в стандартных геометрических размерах, то со вторым уже сложнее. И эта сложность в основном в том, что самостоятельно оценить характеристики грунта – задача непростая, а иногда – и вовсе не разрешимая без привлечения специалистов.

Итак, формулу несущей способности винтовой сваи можно выразить следующим образом:

W = Q / k

W – собственно, сама несущая способность сваи, то есть та эксплуатационная нагрузка, которую опора способна гарантированно выдержать.

Q – расчетное значение несущей способности сваи, исходя из ее размерных параметров и характеристики несущего слоя грунта.

k – так называемый «коэффициент надежности», учитывающий необходимый эксплуатационный запас несущей способности и зависящий от качества предварительно проводимых исследований грунта и, в определённой мере – от общего количества свай.

Величину расчетного значения допустимой нагрузки тоже, казалось бы, определить несложно. Для этого применяется следующая формула:

Q = S × Ro

S – площадь поперечного сечения опорной части сваи, то есть ее лопасти (в вертикальной проекции).

Ro – расчетное сопротивление грунта на уровне заглубления винтовой части сваи.

Сопротивление грунта – эта табличная величина, которую несложно найти. Некоторые значения для наиболее распространенных грунтов, на которых практикуется возведение свайно-винтового фундамента, при условии залегания винтовой части сваи на глубине от 1500 мм и ниже, приведены в следующей таблице:

Тип грунта на уровне залегания винтовой части сваи Особенности грунта Сопротивление грунта на глубине 1500 мм и ниже, кг/см²
Песчаный грунт Крупной фракции, от 2,5 до 5 мм 15,0
Средней фракции, от 1,5 до 2.5 мм 15,0
Мелкой фракции, от 1,0 до 1,5 мм 8,0
Пылевидной фракции, менее 1,0 мм 5,0
Супеси и суглинки Полутвердого состояния 5,5
Тугопластичные 4,5
Мягкопластичные 3,5
Глины Полутвердого состояния 6,0
Тугопластичные 5,0
Мягкопластичные 4,0
Лёсс Мягкопластичный 1,0

Пластичность глины, суглинков или супесей можно определить, просто сжав образец грунта в ладони – сохранит ли комок приданную ему форму или рассыплется при прикосновении. Фракцию песка также определить – не составит особого труда. Лёссовые слои (пористая порода характерного палевого или бежевого цвета) встречаются крайне редко, и несущая способность у них крайне невысокая.

Однако, и это еще не всё. Возвращаемся к поправочному «коэффициенту надежности». Он может принимать значение от 1,2 до 1,7. Мало того, что этим самым уже закладывается эксплуатационный запас несущей способности сваи – такая поправка еще и учтет точность определения структуры грунта. Разъясним подробнее.

  • Самое правильное решение при проектировании фундамента – это профессиональный анализ состояния грунтов на участке строительства. Для этого в нескольких местах пробуриваются скважины, берутся образцы на органолептический и лабораторный анализы. По итогам исследования составляется заключение о картине расположения грунтов и водоносных горизонтов, после чего вырабатываются рекомендации по применению того или иного типа . При таком подходе коэффициент надежности можно взять минимальный: k = 1,2.

Увы, к таким мерам при выполнении «малоформатного» частного строительства прибегают нечасто, просто из-за высокой стоимости этих услуг: подобный профессиональный анализ может потребовать дополнительно несколько десятков тысяч рублей.

Цены на пеноблок

пеноблок

  • Второй способ, который, правда, также потребует привлечения специалистов с соответствующим оборудованием – это ввинчивание так называемой эталонной скважины.

На участке под будущее строительство вкручивается свая выбранного типоразмера. После того как ее винтовая часть пройдет уровень промерзания грунта, начинают вести мониторинг крутящего момента, прикладываемого к опоре. Это дает возможность с большой степенью точности определить расположение слоев грунта с максимальной несущей способностью.

Стоимость подобных услуг уже не столь велика – всего несколько тысяч рублей, поэтому такой подход в частном жилом строительстве применяется чаще всего. Степень достоверности полученных параметров – достаточно велика, поэтому коэффициент надежности также принимают не особо большим: k = 1,25 .

  • Наконец, многие застройщики на свой страх и риск определяют состояние грунта самостоятельно, выкапывая шурфы или пробуривая скважины на предполагаемую глубину расположения винтовой части сваи, наблюдая строение грунтов в выкопанных колодцах, погребах и т.п.

В связи с тем, что этот подход не отличается высокой точностью, коэффициент надежности при подсчетах закладывается максимальный. k = 1,45 ÷ 1,7 . Так что за экономию в одном (отказ от услуг специалистов), возможно, придется заплатить увеличением общего количества свай. Есть над чем подумать…

Общая нагрузка, создаваемая зданием, и окончательный расчет количества винтовых свай

Теперь необходимо подсчитать, какая нагрузка будет выпадать на свайный фундамент от планируемого к возведению на его основе здания. Для этого подсчитывается вес всех строительных конструкций: внешних и внутренних капитальных стен, внутренних перегородок, перекрытий – первого этажа и чердачного, стропильной системы и кровельного покрытия. Принимаются в расчет и эксплуатационные нагрузки – масса проживающих в доме людей, предметов мебели и других предметов интерьера, крупной бытовой техники и оборудования и т.п.

Можно «зарыться в таблицы» с параметрами основных стройматериалов и провести такой расчет самостоятельно. Мы же предлагаем поступить еще проще – воспользоваться возможностями размещенного ниже калькулятора, который, не претендуя на инженерную точность, все же даст результат во вполне допустимом диапазоне погрешностей, которого будет достаточно для определения необходимого количества свай винтового фундамента.

Калькулятор расчета нагрузки от планируемого к постройке здания на свайно-винтовой фундамент

Несколько необходимых пояснений по проведению расчета:

Материал стен можно выбрать из выпадающего списка. Площадь стен вычисляется самостоятельно, по имеющимся на руках «наметкам» планируемого к постройке дома или хозяйственного сооружения. При желании – можно исключить из площади оконные и дверные проемы, но иногда этим пренебрегают, тем более что таким образом в итоге закладывается дополнительных запас прочности фундамента.

Сложности с вычислением площадей? Можем помочь!

Даже давно знакомые геометрические формулы, бывает, подзабываются, а некоторые сложные конфигурации комнат, стен или кровли, случается, ставят в тупик. На помощь придёт статья нашего портала, специально посвященная и дополненная удобными калькуляторами для облегчения вычислений.

Площадь понадобится и для определения массы перекрытий. В программу расчета сразу занесены и средние эксплуатационные нагрузки на перекрытия.

Угол уклона скатов кровли необходим для определения величины снеговой нагрузки. В этих же целях потребуется по карте-схеме определить зону своего региона проживания и указать ее в соответствующем поле калькулятора – так будет учтена среднестатистическая снеговая нагрузка.


Наконец, есть смысл учесть и массу ростверка, связывающего сваи.

  • Если производится брусом, то не будет большой ошибкой просто включить ее в площадь стены, и в этом случае просто на слайдере «длина ростверка» оставляется по умолчанию «0».
  • Но если применяются тяжелые материалы – стальной прокат или железобетон, то возрастание нагрузки бывает нешуточным. Поэтому необходимо указать общую длину ростверков, включая внешний периметр и, при наличии, планируемые внутренние перемычки под установку капительных перегородок. Затем указывается материал изготовления, а удельный его вес уже внесен в программу расчета.

Итоговое значение будет дано в килограммах и тоннах.

M100 | B7,5 M150 | B10 M150 | B12,5 M200 | B15 M250 | B20 M300 | B22,5 M350 | B25 M350 | B26,5 M400 | B30 M450 | B35 M550 | B40 M600 | B45 Выберите марку (класс) бетона, которую хотите получить. М100 (В7.5) Из-за низкой прочности используется в основном при подготовительных бетонных работах. Может быть использован в виде «подушки» под фундамент, бордюр, тротуарную плитку, дорожное полотно и т.п. М150 (В12.5) Бетон данной марки имеет достаточную прочность для заливки разных типов фундамента под малые сооружения. Также используется для заливки стяжек пола, укладки бетонных дорожек. М200 (В15) Одна из самых востребованных марок бетона (наравне с М300) используемых в загородном строительстве. Основное применение: заливка фундамента (столбовно-ростверкового, ленточного, плитного), изготовление бетонных дорожек, стен, лестниц. М250 (В20) Используется для заливки фундамента, малонагруженных плит перекрытий, изготовление лестниц, подпорных стен. М300 (В22.5) Наравне с М200 имеет большую популярность в частном строительстве. Данная марка бетона за счет своей универсальности позволяет использовать его для заливки фундамента под практически любой дом в загородном секторе, а также для изготовления лент заборов, плит перекрытий. М350 (В25) Основное применение: изготовление плит перекрытий, несущих стен, колон, железобетонных изделий и конструкций, отлив монолитных фундаментов. М400 (В30) Редко используется в загородном строительстве. Используется для изготовления поперечных балок, подпорных стенок, конструкций мостов и гидротехнических сооружений, заливки чаш бассейнов, цокольных этажей монолитных зданий. М450(B35) Основное применение: банковские хранилища, мостовые конструкции, метростроение, гидротехнические сооружения. М550 (В40) Основное применение: железобетонные конструкции специального назначения (хранилища банков, плотин, дамб, метростроении). М600 (В45) Основное применение: фундаментные основы для комплексных и масштабных объектов, мостовые опоры, гидротехнические сооружения, объекты особого назначения (бункеры и т.п.). http://www.сайт

л При использовании бетономешалки укажите ее объем. Калькулятор посчитает кол-во замесов для необходимого объема бетона и кол-во составляющих смеси (цемента, песка, щебня и воды) для одного замеса. Если для замешивания вы используете любую тару вертикальной загрузки (ведро, корыто и т.п.) то укажите в литрах объем данной тары. Результаты расчета можно увидеть ниже в данном калькуляторе «Расчет для 1 замеса бетономешалки: Расчетные значения по коэф. выхода бетонной смеси».

1,1-1,8мм | мелкий песок 2-2,5мм | средний песок более 2,5 | крупный песок

Одной из основных задач, возникающих во время проектирования строительства будущего здания, является расчет нагрузки основной конструкции на фундамент. От полученных результатов зависит выбор типа фундамента и его конфигурация. Эта статья посвящена особенностям свайного фундамента дома и его преимуществам. Будут рассмотрены условия, при которых свайная конструкция наиболее предпочтительна, а также продемонстрированы примеры того, как рассчитать количество свай с учетом потенциальных нагрузок на фундамент и характеристик грунта.

Что такое свайный фундамент и из чего он состоит

Основой для этого типа фундамента служат полые стальные сваи, равномерно распределяемые по периметру будущих несущих стен дома. Внешняя поверхность покрывается защитным антикоррозионным слоем на основе цинка или полимерного материала, а внутренняя поверхность защищается бетоном, заливаемой в установленную сваю. Верхняя часть свай для фундамента соединяется посредством сварки с оголовком, который в свою очередь будет поддерживать ростверк – конструкцию, объединяющую отдельные сваи в единую основу. Чаще всего для изготовления ростверка используется бетон, стальные швеллеры и двутавры, реже – деревянный брус.

В отличие от ленточного или монолитного фундамента, также нагруженного по всему периметру здания, для монтажа не потребуется значительный объем земляных работ. Фундамент на сваях рекомендуется использовать в следующих случаях:

  • Грунты, находящиеся под стройплощадкой, характеризуются неустойчивостью, высокой влажностью, усадкой под воздействием сезонных факторов;
  • Застройка проводится на территории со сложным рельефом, на котором крайне сложно или невозможно установить обычные фундаменты;
  • Климатические условия в местности, а также уровень грунтовых вод, согласно действующим правилам СНиП, вынуждают сооружать массивный бетонный фундамент, требующий значительных денежных вложений;
  • При сооружении каркасного здания, как правило, используется именно свайный фундамент.

Виды свай для фундамента

Различают две основные категории, отличающиеся по способу противодействия осадкам свайных фундаментов: стоечные и висячие. Устойчивость висячей сваи обеспечивается за счет силы трения между внешней поверхностью и окружающим ее после погружения грунтом. Стоечные оснащены упором возле своих оснований, который удерживает конструкцию, основываясь на плотных слоях грунта под ним. А также упором служат лопасти винтовых свай, дополнительно трамбующие грунт во время монтажа.

Разделение свай по способу строительства:

  • Забивной тип

По названию понятно, что данные сваи забиваются в грунт с помощью специальных механизмов (строительные пневмомолоты). Их особенностью является тот факт, что при забивании сила, воздействующая на нее, берется из расчета свайного фундамента. Таким образом, она погружается до глубины, на которой находится довольно прочный слой грунта, способный выдержать расчетную массу дома. Данный тип считается очень устойчивым, при забивании грунт вокруг нее и под ней дополнительно уплотняется. Монтаж забивных свай практически не используется при строительстве небольших домиков и частных коттеджей, так как требует применения сложной спецтехники.

  • Винтовые

Изделия состоят из стальной трубы и приваренных в нижней части лопастей либо это цельнолитая конструкция (что предпочтительнее в плане долговечности). Лопасти способствуют проникновению в грунт при ее закручивании, а после установки они удерживают на себе нагрузку на свайный фундамент и не дают ей проворачиваться. В верхней части изделия находятся специальные отверстия, с помощью которых свая ввинчивается в землю. При этом этот процесс вполне можно осуществить вручную, контролируя вертикальное положение во время работы. Внутренний объем заполняется бетоном для увеличения массы и защиты от коррозии.

  • Буронабивные

Порядок установки буронабивных свай не предусматривает использование готовых металлоконструкций. Роль сваи в данном случае выполняет бетон, залитый в предварительно пробуренную скважину. Если грунт недостаточно плотный также потребуется опалубка. Этот способ достаточно прост в применении и подходит для индивидуального строительства. Единственный нюанс: расчетная нагрузка на сваю может оказаться слишком высокой для избранного в качестве основания слоя грунта.

В дальнейших примерах статьи, иллюстрирующих как точно рассчитать свайный фундамент, будут использоваться параметры предельной нагрузки винтовых свай. В следующей таблице вкратце перечислим наиболее распространенные марки данных изделий.

Подробно о свайном фундаменте с ростверком

С одной стороны, ростверк выполняет функцию связного элемента для отдельных свай, с другой – это основа для остальной конструкции здания. Ростверк и сваи условного фундамента объединяются попарно (ленточный тип связки) либо объединяются все оголовки (плиточный тип). Ростверк для дома может изготавливаться из таких материалов:

  • Армированный бетон. Бетонная лента укладывается на оголовки свай, расположенные на уровне земли. Во время проектирования также указываются места прокладывания неглубоких траншей, проходящих вглубь ростверка.
  • Бетонный ростверк подвесного типа. Аналогичный способ, при котором между грунтом и ростверком оставляется зазор. Этот промежуток позволяет компенсировать возможные колебания грунта (в рамках нормы).
  • Ростверк из железобетона. Основой служит двутавр и швеллер (для монтажа под несущие стены СНиП рекомендует) швеллер 30.
  • Деревянные брусья. В последнее время практически не применяются.

Как рассчитать количество свай для фундамента

Правильный расчет количества используемых свай нуждается в предварительной геодезической разведке. Прежде всего, необходимо рассчитать уровень промерзания грунта в зимний период, учитывая, что данный показатель отличается в разных регионах. Для прочной установки сваи ее нижний конец должен находиться ниже этого уровня.

А также необходимо выяснить степень плотности слоев грунта. Чем выше плотность, тем меньшую глубину сваи следует закладывать на этапе проектирования. К примеру, для полускальных и крупноблочных пород она будет минимальной (но не меньше 0,5 метра), а для песчаных и глинистых грунтов придется углубляться по максимуму.

Чтобы посчитать количество и тип используемых свай необходимо учитывать множество параметров. Для упрощения задачи можно использовать специальный онлайн калькулятор, но для общего понимания процесса лучше пройтись по всем этапам расчета самостоятельно.

1. Вычисление потенциальной предельной нагрузки на сваи

Перед началом расчета количества свай для фундамента следует выяснить несущую способность отдельной сваи. Общий вид формулы выглядит следующим образом:

В этом случае W является искомой фактической несущей силой, Q – расчетное значение несущей силы, рассчитанное для отдельной сваи по материалу, размерам и характеристикам грунта; k – дополнительный «коэффициент надежности», расширяющий эксплуатационный запас фундамента.

2. Вычисление расчетной нагрузки на сваи

Где S равно площади поперечного сечения лопастей сваи, а Ro – это показатель грунтового сопротивления на глубине размещения лопастей. Сопротивление грунта можно брать из готовой таблицы:

Что касается «коэффициента надежности» условного фундамента, его величина может варьироваться в пределах 1,2-1,7. Логично, что чем меньше коэффициент, тем ниже себестоимость фундамента на этапе проектирования, поскольку для достижения заданного значения несущей силы не потребуется использования большого количества свай. Чтобы уменьшить коэффициент следует провести качественный и достоверный анализ грунта на стройплощадке, привлекая специалистов.

А также для данных целей используется методика ввинчивания эталонной скважины. Ее применение зачастую требуется для расчета осадка свайных фундаментов на промышленных стройплощадках и при строительстве многоквартирных зданий, как того требует СНиП. Но при желании эталонная скважина может буриться и при индивидуальном строительстве.

3. Расчет нагрузки от конструкции здания

На завершающем этапе проектирования свайного фундамента проводится расчет количества свай. Для этого потребуется просуммировать все элементы конструкции здания: от капитальных стен и перекрытий, до стропильной системы и кровли. Провести точное вычисление всех компонентов довольно сложно, поэтому рекомендуем воспользоваться одним из специализированных калькуляторов. И также в калькулятор расчета вносятся эксплуатационные нагрузки, включающие предметы интерьера, мебель, бытовую технику и даже проживающих в доме людей.

4. Подсчет требуемого количества свай

Перед тем как рассчитать количество задействованных свай нам нужно получить на предыдущих этапах две величины: совокупную массу здания (M) и несущую способность сваи (W) умноженную на «коэффициент надежности». Значение несущей способности можно взять из Таблицы 1. Итак, если масса равна 58 тонн, а скорректированная несущая способность сваи СВС-108 равна 3,9 тонн, то:

Как показал пример расчета, для дома весом в 58 тонн потребуется 15 свай марки СВС-180. Следует отметить, что это значение приблизительно и не учитывает правила точного распределения свай согласно СНиП:

  • Первые должны быть установлены в точках пересечения несущих конструкций;
  • Остальные монтируются равномерно между обозначенными углами;
  • Минимальное расстояние между отдельными сваями 3 метра;

Как правило, в процессе проектирования выясняется, что для соблюдения вышеперечисленных правил потребуется немного больше свай, чем показали расчеты.

5. Глубина установки свай и расстояние между ними

Базовое значение глубины установки сваи рассчитывается исходя из глубины промерзания грунта в конкретно регионе, плюс 25 сантиметров. И также перед тем как рассчитать свайный фундамент, необходимо выяснить:

  • Уровень прочности сваи по материалу и конструкции;
  • Несущую способность грунта;
  • Провести расчет осадки свайного фундамента, со временем возникающей под нагрузкой здания;
  • Дополнительные параметры (температурный режим в течение года, объем осадков, нагрузки от ветра и др.).

Заключение

С помощью свайного фундамента можно достаточно быстро и за небольшие деньги соорудить прочное основание для жилой или нежилой постройки. В ряде случаев это единственный вариант, поскольку такому фундаменту не страшны осадки грунта, он легко возводится на сложном рельефе. Кроме того, по сравнению с традиционным ленточным или монолитным фундаментом, для монтажа свайной основы не потребуется большой объем земляных работ. Если провести правильный расчет свайного фундамента, он прослужит в течение десятилетий, не теряя функциональности.


Установка свайно-винтового фундамента требует скрупулезного расчета. Для любого столбчатого фундамента определение места установки опор и расчет их несущей способности принципиально отличается от расчета монолитных фундаментов. В данном случае вес конструкции и прочие нагрузки распределяются не равномерно по всему монолиту, а приходятся на каждую отдельную сваю.

1. Нагрузки на фундамент

Основные нагрузки на фундамент несет вес будущей конструкции. Если строится дом, то для определения общей нагрузки необходимо знать вес

  • Обвязки фундамент
  • Нижнего перекрытия
  • Стен внешних и внутренних
  • Верхнего перекрытия и потолка
  • Стропильной системы крыши
  • Кровельного материала
  • Инженерных коммуникаций
  • Оконных и дверных блоков
  • Отделочных материалов
  • Крыльца и веранды, если они находятся на одном фундаменте с домом

Кроме того, на грунт, как конечную опору строения, оказывают нагрузки и сами винтовые сваи – чем больше будет диаметр применяемых труб, тем больше вес.


Все перечисленные параметры являются исходными и неизменными после постройки и ввода дома в эксплуатацию. Эксплуатация дома привносит новые нагрузки на фундамент, в частности

  • Вес людей в доме
  • Вес оборудования
  • Вес мебели и бытовых приборов
  • Вес снега на кровле

Очевидно, что эксплуатационные нагрузки будут непостоянными, но учитывать их в расчете нужно по максимуму.

Все указанные нагрузки являются вертикальными. Но кроме них при эксплуатации дома добавляются боковые воздействия:

  • Сила ветра, давящая на стены и скат крыши
  • Сейсмические нагрузки
  • Силы пучинистости грунта зимой
  • Конструкционные нагрузки, связанные с изменениями линейных размеров элементов здания (усушка древесины, увлажнение и проч)

Все нагрузки различаются не только по своей силе, но и по месту приложения, а также по времени воздействия. Различают следующие виды нагрузок:

  1. Равнораспределенные – вес самого здания или снега на кровле
  2. Сосредоточенные, такие как вес оборудования или мебели на ограниченном участке дома
  3. Статические – постоянные во времени
  4. Динамические – например, ударная нагрузка порывов ветра или вибрация от работы тяжелого оборудования

В некоторых случаях нагрузки могут совпадать, усиливая общее воздействие на опору, и это тоже должно быть учтено в расчете фундамента.

2. Основные опорные точки

При расчете необходимо иметь представление о том, как действуют те или иные нагрузки – отсюда можно определить положение опорных точек столбчатого фундамента. Для этого рассмотрим конструкцию здания и то, как перераспределяются по ней нагрузки.

Так, вес кровли и снега на нем передается на стропильную систему. Та, в свою очередь установлена на боковые стены и в некоторых случаях на верхнее перекрытие. Перекрытие тоже опирается на боковые и внутренние несущие стены. В некоторых случаях крыша может выступать за периметр основания дома и опираться на отдельные опоры – столбы или колонны – в этом случае часть нагрузок на стены уменьшается, но в устройстве фундамента должны быть предусмотрены дополнительные опорные точки.

Таким образом, очевидно, что вертикальные нагрузки со стороны кровли и крыши в основном направлены на стены здания.

Это означает, что опорные точки фундамента должны быть расположены в первую очередь под стенами. Как правило, опоры ставятся по периметру всего здания и по линиям расположения несущих стен. Сами стены со своим весом и нагрузками, переданными от верхней части здания, давят на обвязку фундамента.

Нижнее перекрытие оказывает давление в первую очередь на боковые опоры, т.е. на балки нижней обвязки фундамента – по периметру и в более сложном по поперечным балкам.

Как упоминалось выше, в здании могут иметься дополнительные элементы, повышающие общий вес дома. Примером может служить массивное котельное оборудование. Несмотря на то, что вес любых предметов, находящихся в помещении, передается более-менее равномерно на нижнее перекрытие, в таких особо нагруженных местах создаются дополнительные локальные нагрузки на сами балки перекрытия, точнее на участки, расположенные непосредственно под местом расположения оборудования.

Очевидно, что они требуются создания отдельных опорных точек.


3. Учет характеристик грунта

Характеристики грунта с точки зрения установки фундамента определяют в первую очередь его несущую способность, то есть устойчивость к нагрузкам со стороны установленных на нем конструкций без проседания. Она измеряется в тн/м2 или кгс/см2. Наиболее значимыми для несущей способности грунта являются

  • Тип грунта
  • Степень уплотнения
  • Влажность

Для изучения параметров грунта в общем случае необходимо проводить геологические изыскания. Однако стоимость их достаточно высока, и на практике строители пользуются наработанными опытом обобщенными параметрами для тех или иных грунтов, а также пользуются упрощенными методами определения свойств грунта.

Во-первых, существуют определенные известные характеристики для основных видов грунта, на котором планируется постройка – песчаных или глинистых.

Во-вторых, проводится пробное вкручивание свай.

Для самостоятельного определения типа грунта можно использовать известный способ —

скатать шарик из земли и растереть ладонями. При этом можно увидеть, что:

  1. Шар из песка практически не скатывается, и при растирании чувствуются отдельные песчинки
  2. Шар из песчаного грунта (до 90% состава) формируется, но разрушается при самых небольших нагрузках
  3. Шар из суглинка (до 30% глины) держит форму, но при воздействии нагрузками трескается по краям
  4. Шар из глины отлично формируется и при надавливании не дает трещин

Плотность различных типов грунтов и их несущая способность определена практикой и приводится в таблицах. Приведем некоторые параметры для наиболее употребимых грунтов:

  • Средний песок – 4-5 т/м2
  • Мелкозернистый зернистый песок – 3-4 т/м2
  • Мелкозернистый влажны песок – 2-3 т/м2
  • Супесь – 2,5-3 т/м2
  • Увлажненная супесь– 2-2,5 т/м2
  • Крупнозернистый песок – 5-6 т/м2
  • Суглинок – 2-3 т/м2
  • Глина – 2,5-6 т/м2
  • Влажная глина – 1-4 т/м2

Насыщенность влагой тоже можно определить простым проверенным способом. Отрыть небольшую (до полуметра глубиной) ямку: если через некоторое время в ней будет скапливаться вода, то грунт можно считать влажным. В противном случае – сухим.

Обобщая сказанное, можно с уверенностью сказать, что для самостоятельного расчета фундамента можно смело использовать данные, приведенные выше. Как правило, тип грунта в данной местности известен.

Пробное вкручивание поможет выявить, насколько общий тип грунта, характерный для близлежащих участков может локально отличаться от среднего.

4. Определение параметров свай

Для того, чтобы определить параметры свай, устанавливаемых в качестве фундамента, необходимо знать их несущую способность. Расчеты показывают, что допустимая нагрузка на сваю зависит от диаметра трубы, толщины стенки, длины сваи и ширины лопасти.

Теоретически несущая способность сваи рассчитывается по формуле

S – площадь опоры, т.е. лопасти

Ro – прочностная характеристика грунта

Поскольку учет параметров грунта взят не из геологических исследований, а из таблиц, необходимо применить понижающий коэффициент. В большинстве случае он берется равным порядка 1,4-1,7, то есть фундамент рассчитывается с запасом прочности до 70%.

Опытным путем установлены усредненные характеристики различных свай. Так сваи диаметром 108 мм способны выдерживать нагрузку до 5-7 тонн. При диаметре 89 мм – предельная несущая нагрузка – около 3-5 тонн. Самые тонкие сваи диаметром 73 мм способны выдержать до 3 тонн веса.

Выбор длины винтовой сваи зависит в основном от типа грунта, на которую будет опираться лопасть. Так на участках с устойчивым грунтом достаточно длины сваи 2,5 метра. Окончательный выбор должен учитывать запас на перепад высот на участке под строительство.

5. Расчет количества свай

Из предыдущего параграфа видим, что количество свай на тот или иной фундамент можно определить, разделив общий вес дома на несущую способность одной сваи.

Приведем приблизительный расчет количества свай для обычного дома.

Так, вес его будет складываться из веса всего здания, умноженного на коэффициент надежности для того или иного типа конструкций. Он равен при постоянной нагрузке:

  1. Для деревянных конструкций – 1,05
  2. Металлических конструкций – 1,2
  3. Стяжек, изоляции – 1,3
  4. Для снеговой нагрузки – 1,4

6. Распределение свай по площади фундамента

Существуют основные правила распределения свай:

  1. В обязательном порядке сваи устанавливаются под углы здания. Это самые напряженные точки, так как здесь сходятся нагрузки как минимум от двух стен.
  2. При необходимости под каждую стену устанавливается еще одна или несколько свай, в зависимости от длины стен, в том числе и внутренних несущих
  3. В участки с повышенной нагрузки сваи также устанавливаются по углам.

Приведем расчет количества свай для дома с мансардой, который оказывает нагрузку на фундамент до 50 тонн с учетом приведенных коэффициентов.

Количество, необходимое для возведения фундамента для такого дома:

  • Сваи диаметром 108 мм – 50/6= 8,3 сваи. Реально требуется 9 свай.
  • Сваи диаметром 89 мм – 50/4=12,5 свай. С запасом берется 13 свай.

При прямоугольном сечении 6х4,5м и одной несущей стене 6х3 м сваи устанавливаются: 4 по углам, остальные вдоль стен.

Рассмотрим применение сваи 89 мм. По углам здания ставится 4 сваи. Две сваи устанавливаются по концам внутренней несущей стены. Таким образом, остается 13-6=7 свай. Одну целесообразно установить под среднюю точку несущей стены, а остальные распределить по периметру. Если добавить еще две сваи, то на каждую из боковых стен (кроме угловых) будет приходиться по 2 сваи. Тогда шаг их установки оставит 1.5 метра, что вполне соответствует хорошему запасу прочности.


7. Заключение

Расчет фундамента имеет большое значение в закладке основы под строительства, особенно на слабых грунтах и естественных уклонах площадки под постройку дома. Его можно провести самостоятельно, но при строительстве большого дома лучше обратиться к специалистам.

Фирма «К-ДОМ» специализируется в возведении фундаментов на винтовых сваях и имеет наработки в расчете фундаментов любой сложности. Мы готовы оказать консультационные услуги, провести контрольное вкручивание и дать компетентные рекомендации по использованию того или иного типа фундамента, а также установить свайно-винтовой фундамент под ключ.

Свайный фундамент является одним из самых нетребовательных к плотности грунта и его составу. Отличается минимальной стоимостью, по сравнению с другими типами оснований, а также относительной простотой монтажа. Именно поэтому его и выбирают строители и проектировщики для малоэтажных объектов.

Однако все преимущества данного типа фундамента можно получить только при выполнении грамотного расчета количества свай с учетом конкретных условий эксплуатации. Буронабивные или винтовые сваи под дом обязательно должны иметь достаточный запас прочности.

Основные этапы проведения расчетов количества свай


Расчет количества буронабивных или винтовых свай для фундамента производится в два основных этапа:

  1. Вычисление общих нагрузок на основание, включая вес самого фундамента вместе с ростверком. В общий вес также включается и полезная нагрузка: вес мебели, предметов интерьера и т. д. Все эти факторы называются статической нагрузкой.Для большей точности следует учесть и переменные влияющие факторы, такие как количество выпадающих осадков, вес всех жильцов и ветровое давление. Во внимание при расчетах особое внимание уделяется данным, полученным в ходе инженерных изысканий: плотность грунта, уровень промерзания, глубина залегания грунтовых вод, пучинистость.
  2. Расчет нагрузки на одну сваю и определение ее несущей способности. Зная максимальные нагрузки, их следует сравнить со значениями статических и переменных величин из первого пункта, чтобы обеспечить достаточный запас прочности.

Расчет длины и диаметра свай

Для проведения расчетов необходимо опираться на следующие данные инженерных изысканий:

  • особенности грунта на площадке под застройку;
  • гидрогеологические данные.

Данные параметры позволят определить геометрию свай, а также их конструкцию. Для упрощения расчетов принимают сваю за жестко закрепленный в земле стержень. Его положение от подошвы для крепления ростверка определяется расстоянием L1, которое можно вычислить по формуле:

где Lо – длина части сваи от уровня грунта до подошвы высокого ростверка;

аs – коэффициент деформации, который можно взять из соответствующих справочников, либо из СП 24.13330.2011.

Для буронабивных свай глубина погружения в скальный грунт, кроме сильно сжимаемого, определяется по формуле:

Расчет общих нагрузок на основание

Вычисление общих нагрузок возможно только при наличии проекта дома с деталировкой и перечнем используемых материалов. Точный расчет можно проводить на основании СП 24.13330.2011, но для жилых объектов рекомендуется применять упрощенную схему. Это позволит получить чуть меньшую точность, но хорошим запасом по прочности, а также не привлекать специалистов-проектировщиков.

Определяем фактическую массу здания


В понятие фактической массы здания входят все применяемые строительные материалы и конструкции для его возведения: стены, перекрытия, кровля, перегородки, окна, двери, установленное количество свай и т. д. Для определения веса стен можно воспользоваться следующими данными:

  1. Кирпичная кладка, толщиной в 150 мм (в полтора кирпича), создает нагрузку на фундамент величиной в 30-50 кг/м2.
  2. Оцилиндрованные бревна, брус или сруб способны нагрузить основание на 70-100 кг/м2.
  3. Вес железобетонных плит с толщиной 150 мм составит 300-350 кг/м2.
  4. Каркасные панели создадут нагрузку на фундамент величиной в 30-50 кг/м2.

Для определения веса перекрытий необходимо ориентироваться на такие значения:

  1. Чердачное перекрытие с применением деревянных балок и утеплителя плотностью менее 200 кг/м3 создаст нагрузку на фундамент 70-100 кг/м2.
  2. Перекрытие чердака деревянными балками и настилом утеплителя плотностью менее 500 кг/м3 создадут нагрузку для фундамента 150-200 кг/м2.
  3. Цокольное перекрытие деревянными балками с утеплителем плотностью менее 200 кг/м2 нагрузят основание на 100-150 кг/м2.
  4. Перекрытие цоколя деревянными балками с утеплителем плотностью до 500 кг/м3 создадут нагрузку для фундамента 200-300 кг/м2.
  5. Перекрытие на основе железобетонных плит создадут нагрузку в 500 кг/м2.

Упростить расчет нагрузки кровельного материала можно путем использования данных компании изготовителя.

Для большинства объектов достаточно брать средние значения нагрузки по каждому их конструктивных элементов здания. Однако, если предполагается строительство из плотных материалов, например, кирпича без пустот либо плотных пород древесины, то тогда нужно расчет проводить с использованием максимальных величин.

Определение полной нагрузки на единицу площади производят путем суммирования всех нагрузок и умножения полученного значения на коэффициент 1,5, который обеспечит запас прочности в 50%. Для большинства жилых домов этого запаса будет достаточно.

Определение снеговых нагрузок

Величина снеговых нагрузок определяется согласно СП 20.13330.2011 по формуле:


где ce – коэффициент сноса снега под действием внешних факторов, таких, например, как ветровых потоков;

ct – термический коэффициент;

µ – коэффициент перехода между снежным покровом и кровельным покрытием;

Sg – масса снежного слоя на единицу площади (1 м2).

Все коэффициенты необходимо взять из таблиц СП 20.13330.2011. При этом вес снегового покрова следует определить с использованием карты снеговых районов.

Величина снежных нагрузок для юга России составляет 50 кг/м2, для средней полосы – 100 кг/м2, а для севера – 190 кг/м2.

Критерии оценки ветровых нагрузок


Для фундамента на основе буронабивных или винтовых свай ветровые нагрузки также стоит учитывать, так как они могут создавать сдвиговые поперечные деформации. Расчет производится согласно СП 20.13330.2011. При этом обязательно учитывают следующие факторы:

  1. Преобладающий тип ветровых потоков.
  2. Предельные значения давления ветра на единицу площади.
  3. Наличие вихревых потокообразований.
  4. Возможное образование некоторых видов неустойчивых аэродинамических колебаний.

Нормативные ветровые нагрузки определаются путем суммирования средней и пульсационной составляющих.

При наличии в конкретном регионе преобладающих ветров к нагрузке нужно добавлять минимум 30-35% запаса. Это позволит покрыть возможные неточности при расчетах буронабивных оснований.

Вычисление полезных нагрузок

Расчет полезных нагрузок для буронабивных и винтовых свай вычисляется по методу, описанному в СП 20.13330.2011. Во внимание берутся все предметы интерьера, люди и домашние животные. Для жилых домов рекомендуется брать усредненную нагрузку, которая составляет 150 кг/м2.

Посмотрите видео, которое рассказывает о вычислении полезных нагрузок, а также испытании свайных опор.

Расчет несущих характеристик сваи

Несущие характеристики сваи в конкретном типе грунта являются важными, поскольку в случае пренебрежения ими может возникнуть ситуация, когда характеристики сваи превысят возможности почвы и появятся усадки. Вследствие негативного влияния проседания почвы вес здания будет распределен неравномерно и могут возникнуть нежелательные деформации или частичное разрушение объекта.

Определить несущую способность грунта можно только после проведения изысканий. Затем, зная состав залегающих слоев и с использованием таблиц из нормативных документов можно вычислить несущую способность почвы. В таблице 1 приведены значения для типичных грунтовых составов.


После этого определают несущие характеристики одной сваи. Для этих целей также необходимо пользоваться справочными данными для конкретного типа свай либо данными от производителей свайных элементов для буронабивных или винтовых свай. В качестве примера в Таблице 2 приведены данные по определению несущих способностей винтовой сваи 89х300 (Т).


Расчет количества винтовых или буронабивных свай для фундамента производится обычным делением полной нагрузки объекта на несущую способность одной опоры.

Каким должен быть шаг размещения свай?

Полученное значение количества свай является недостаточным для расчета фундамента, так как их размещать можно только определенным образом, соблюдая определенный шаг, чтобы не нарушить плотность грунта и не ухудшить его несущие способности.

Максимальный шаг для домов из разных материалов составляет:

  1. Для деревянных на основе готовых каркасов, бревен либо бруса допустимый интервал между сваями составляет 3 м.
  2. Для домов на основе пенобетонных блоков или шлакоблока шаг между сваями должен быть до 2-х метров.

Минимальный шаг свай фундамента ограничен несущими способностями грунта. При установке буронабивных свай или закручивании винтовых происходит уплотнение почвенных слоев. Поэтому слишком близкое расположение является не только нецелесообразным с технической, а и финансовой точки зрения.

Шаг установки свай определяется их диаметром и не может превышать более 3 диаметров опор.

Заключение

Расчет фундамента и определение количества свай для буронабивных и винтовых опор производится с учетом множества влияющих факторов, каждый из которых требуется в обязательном порядке учитывать. Любые ошибки могут сыграть критическую роль в длительности эксплуатации объекта. Поэтому необходимо, как минимум, делать достаточный запас по прочности.