Пропускная способность трубы калькулятор газ. Пропускная способность трубопровода

ГАЗОВЫЕ СЕТИ

Современные распределительные системы снабжения природным газом представляют собой сложный комплекс сооружений, состоящий из газораспределительных станций, газовых сетей различного назначения, газорегуляторных пунктов и установок, систем резервирования и установок для сжигания газа. Каждый из элементов системы газоснабжения имеет свои задачи и особенности.

3.1. Расчётные расходы газа

Для проектирования системы газоснабжения населённого пункта необходимы данные о годовом потреблении природного газа. Это определяется по нормам с учётом перспективы развития потребителей.

Поскольку система газоснабжения имеет высокую стоимость и большую металлоёмкость серьёзное внимание должно быть уделено обоснованию расчётных расходов газа. Эти расходы используются для выбора диаметров газопроводов.

Газовые сети необходимо рассчитывать на максимальные часовые расходы. Расчётный часовой расход газа Q р.ч , м 3 /ч на хозяйственно-бытовые нужды определяется как доля годового расхода по формуле:

где К тах - коэффициент часового максимума (переход от Q год к максимальному часовому расходу газа).

Расчётный часовой расход газа на технологические нужды промышленных и сельхозпредприятий следует определять по данным топливопотребления этих предприятий (с учётом изменения КПД при переходе на газовое топливо). Коэффициент К max , представляет собой величину, обратную числу часов в год использования минимума (К т ax = 1/m ). Величина К т ax для промышленных предприятий зависит от вида производства, технологического процесса и числа рабочих смен в сутки.

Для отдельных жилых домов и общественных зданий Q р.ч определяется по сумме номинальных расходов газа газовыми приборами с учётом коэффициента одновременности их действия.

(3.2)

где К 0 - коэффициент одновременности; q ном - номинальный расход газа прибором, м 3 /ч; п - число однотипных приборов; х - число типов приборов.

3.2. Расчёт диаметра газопровода и допустимых потерь давления

Пропускная способность газопроводов может приниматься из условий создания при максимально допустимых потерях давления газа наиболее экономичной и надежной в эксплуа­тации системы, обеспечивающей устойчивость работы ГРП и газорегуляторных установок (ГРУ), а также работы горелок потребителей в допустимых диапазонах давления газа.

Расчетные внутренние диаметры газопро­водов определяются исходя из условия обеспече­ния бесперебойного газоснабжения всех потре­бителей в часы максимального потребления газа.

Расчет диаметра газопровода следует выполнять, как правило, на компьютере с оп­тимальным распределением расчетной потери давления между участками сети.

При невозможности или нецелесообразно­сти выполнения расчета на компьютере (отсут­ствие соответствующей программы, отдельные участки газопроводов и т.п.) гидравлический расчет допускается производить по приведен­ным ниже формулам или по номограммам (СП-42-101-2003) составленным по этим формулам.

Расчетные потери давления в газопро­водах высокого и среднего давления принима­ются в пределах категории давления, принятой для газопровода.

Расчетные суммарные потери давления газа в газопроводах низкого давления (от ис­точника газоснабжения до наиболее удаленно­го прибора) принимаются не более 180 МПа, в том числе в распределительных газопроводах 120 МПа, в газопроводах-вводах и внутренних газопроводах - 60 МПа.

Значения расчетной потери давления газа при проектировании газопроводов всех давлений для промышленных, сельскохозяй­ственных и бытовых предприятий и организа­ций коммунально-бытового обслуживания при­нимаются в зависимости от давления газа в месте подключения с учетом технических ха­рактеристик принимаемого к установке газо­вого оборудования, устройств автоматики бе­зопасности и автоматики регулирования техно­логического режима тепловых агрегатов.

Падение давления на участке газовой сети можно определять:

· для сетей среднего и высокого давлений по формуле

(3.3)

где P H - абсолютное давление в начале газопровода, МПа; Р K - абсолютное давление в конце газо­провода, МПа; Р 0 = 0,101325 МПа; λ - коэффициент гидравлического тре­ния; l - расчетная длина газопровода посто­янного диаметра, м; d - внутренний диаметр газопровода, см; ρ 0 - плотность газа при нормальных ус­ловиях, кг/м 3 ; Q 0 - расход газа, м 3 /ч, при нормальных условиях;

· для сетей низкого давления по формуле

(3.4)

где Р H - давление в начале газопровода, Па; Р K - давление в конце газопровода, λ, l, d, ρ 0 , Q 0 - обозначения те же, что и в предыдущей формуле.

Коэффициент гидравлического трения λ определяется в зависимости от режима дви­жения газа по газопроводу, характеризуемого числом Рейнольдса,

(3.5)

где ν - коэффициент кинематической вяз­кости газа, м 2 /с, при нормальных условиях; Q 0 , d - обозначения те же, что и в предыдущей форму­ле, и гидравлической гладкости внутренней стенки газопровода, определяемой по условию

где Rе - число Рейнольдса; п - эквивалентная абсолютная шероховатость внутренней поверхности стенки трубы, принимаемая равной для новых стальных - 0,01 см, для бывших в эксплуатации стальных - 0,1 см, для полиэтиленовых неза­висимо от времени эксплуатации - 0,0007 см; d - обозначение то же, что и в предыдущей формуле.

В зависимости от значения Rе коэффици­ент гидравлического трения λ определяется:

· для ламинарного режима движения газа Rе < 2000

· для критического режима движения газа Rе = 2000-4000

(3.8)

· при Rе > 4000 - в зависимости от выпол­нения условия (3.6);

· для гидравлически гладкой стенки (нера­венство (3.6) справедливо):

· при 4000 < Rе < 100000 по формуле

· при Rе > 100000

(3.10)

· для шероховатых стенок (неравенство (6) несправедливо) при Rе > 4000

(3.11)

где п - обозначение то же, что и в форму­ле (3.6);d - обозначение то же, что и в форму­ле (3.4).

Расчетный расход газа на участках распределительных наружных газопроводов низкого давления, имеющих путевые расходы газа, следует определять как сумму транзит­ного и 0,5 путевого расходов газа на данном участке.

Падение давления в местных сопротив­лениях (колена, тройники, запорная арматура и др.) допускается учитывать путем увеличения фактической длины газопровода на 5-10 %.

Для наружных надземных и внутрен­них газопроводов расчетную длину газопрово­дов определяют по формуле



(3.12)

где l - действительная длина газопровода, м; - сумма коэффициентов местных со­противлений участка газопровода; d - обозначение то же, что и в форму­ле (3.4);λ - коэффициент гидравлического трения, определяемый в зависимости от режима течения и гидравлической гладкости стенок газопровода по формулам (3.7) - (3.11).

Расчет кольцевых сетей газопроводов следует выполнять с увязкой давлений газа в узловых точках расчетных колец. Неувязка по­терь давления в кольце допускается до 10 % .

При выполнении гидравлического рас­чета надземных и внутренних газопроводов с учетом степени шума, создаваемого движением газа, следует принимать скорости движения газа не более 7 м/с для газопроводов низкого давления, 15 м/с для газопроводов среднего давления, 25 м/с для газопроводов высокого давления.

При выполнении гидравлического рас­чета газопроводов, проведенного по формулам (3.5)-(3.12), а также по различным методикам и программам для электронно-вычислительных машин, составленным на основе этих формул, расчетный внутренний диаметр газопровода следует предварительно определять по форму­ле

(3.13)

где d - расчетный диаметр, см; А, В, т, т 1 - коэффициенты, определяемые потаблицам 3.1 и 3.2 в зависимости от ка­тегории сети (по давлению) и мате­риала газопровода; Q 0 - расчетный расход газа, м 3 /ч, при

нормальных условиях; ΔР УД - удельные потери давления (Па/м - для сетей низкого давления, МПа/м - для сетей среднего и высокого давле­ния), определяемые по формуле

Допустимые потери давления (Па - для сетей низкого давления, МПа/м - для сетей среднего и высокого дав­ления); L - расстояние до самой удаленной точ­ки, м.

Таблица 3.1

Таблица 3.2

Внутренний диаметр газопровода при­нимается из стандартного ряда внутренних диа­метров трубопроводов: ближайший больший - для стальных газопроводов и ближайший мень­ший - для полиэтиленовых.

3.3. Расчёт газовых сетей высокого и среднего давления.

3.3.1. Расчёт разветвлённых распределительных газопроводов высокого и среднего давления

Гидравлические режимы работы распределительных газопроводов должны приниматься из условий создания системы, обеспечивающей устойчивость работы всех ГРС, ГРП, горелок в допустимых пределах давления газа.

Расчёт газопроводов сводится к определению необходимых диаметров и к проверке заданных перепадов давления.

Порядок расчёта может быть следующим.

1 . Начальное давление определяется режимом работы ГРС или ГРП, а конечное давление паспортными характеристиками газовых приборов потребителей.

2. Выбирают наиболее удалённые точки разветвлённых газопроводов и определяют общую длину l 1 по выбранным

основным направлениям. Каждое направление рассчитывается отдельно.

3. Определяют расчётные расходы газа для каждого участка газопровода Q p .

4. По значениям Q p расчётом или по номограммам СП 42-101-2003 выбирают предварительно диаметры участков, округляя их в большую сторону.

5. Для выбранных стандартных диаметров находят действительные значения перепада давления и затем уточняют P K .

6. Определяют давления, начиная с начала газопровода, т.к. начальное давление ГРС или ГРП известно. Если давление Р K действительное значительно больше заданного (более 10 %), то уменьшают диаметры конечных участков основного направления.

7. После определения давлений по данному основному направлению проводят гидравлический расчёт газопроводов-отводов по той же методике, начиная со второго пункта. При этом за начальное давление принимают давление в точке отбора.

3.3.2. Расчёт кольцевых газовых сетей высокого и среднего давления

Все городские сети рассчитывают на заданный перепад давления. Расчётный перепад для сети высокого (среднего) давления определяют из следующих соображений. Начальное давление (Р н) принимают максимальным по СНиП, а конечное давление (Р к) таким, чтобы при максимальной нагрузке сети было обеспечено минимальное допустимое давление газ перед регуляторами на ГРП. Величина этого давления складывается из максимального давления газа перед горелками, перепада давлений в абонентском ответвление при максимальной нагрузке и перепада в ГРП. В большинстве случаев перед регуляторами давления достаточно иметь избыточное давление 0,15÷0,20 МПа.

При расчёте кольцевых сетей необходимо оставлять резерв давления для увеличения пропускной способности системы при аварийных гидравлических режимах. Стопроцентное обеспечение потребителей газом при отказах элементов системы связано с дополнительными капитальными вложениями.

Максимального эффекта можно добиться при следующей постановке задачи. Ввиду кратковременности аварийных ситуаций следует допускать снижение качества системы при отказах её элементов. Снижение качества оценивают коэффициентом обеспеченности К об, который зависит от категории потребителей. Объемный расход газа, подаваемого потребителю при аварийном режиме определится из соотношения

где. - расчетный расход газа потребителя, м 3 /ч.

Коэффициент обеспеченности для коммунально-бытовых потребителей можно принять 0,80÷0,85, для отопительных котельных 0,70÷ 0,75. После обоснования К об для всех потребителей определяют необходимый резерв пропускной способности сети.

Сети высокого (среднего) давления обычно состоят из одного кольца и ряда отводов к газорегуляторным пунктам. Расчёт ведут на три режима: нормальный и два аварийных, когда выключается головные участки по обе стороны от точки питания, а движение газа идёт в одном направлении при уменьшенных нагрузках. Диаметры сети принимаются максимальными из двух аварийных режимов.

Порядок расчёта одно кольцевой сети следующий.

1. Производится предварительный расчёт диаметра кольца по формулам раздела 3.2.

2. Выполняется два варианта гидравлического расчёта аварийных режимов. Диаметры участков корректируются так, чтобы давление газа у последнего потребителя на понижалось ниже минимально допустимого значения. Для всех ответвлений рассчитывают диаметры газопроводов на полное использование перепада давления с подачей им газа.

3. Рассчитывают распределение потоков при нормальном режиме и определяют давление во всех узловых точках.

4. Проверяются диаметры ответвлений к сосредоточенным потребителям при аварийном гидравлическом режиме. При недостаточности диаметров увеличивают их до необходимых размеров.

3.4. Расчёт газовых сетей низкого давления

3.4.1. Расчёт разветвлённых распределительных газопроводов низкого давления

К городским сетям низкого давления потребителей присоединяют, как правило, непосредственно. Колебания давления газа у потребителей зависят от величины расчётного перепада (∆ ) давления и степени его использования на пути движения газа от точки питания до газового прибора. В зависимости от принятых давлений газа перед бытовыми газовыми приборами устанавливаются максимальные давления газа в распределительных газопроводах после ГРП: 0,003 МПа при номинальном давлении (∆ ) приборов 0,002 МПа и 0,002 МПа при номинальном давлении у приборов 0,0013 МПа.

При расчётах газопроводов целесообразно использовать номограммы, построенные по расчётным формулам (см. приложение Б СП 42-101-2003).

Типовой порядок расчёта газовой сети.

1. Начальное и конечное давление принимают по режиму работы ГРП и по характеристикам газовых приборов.

2. Падение давления в газопроводах низкого давления следует определять в зависимости от Re.

3. Определяют расчётные расходы газа по участкам Q p ., i ,.

4. Выбирают наиболее удалённые точки системы и рассчитывают , для каждого направления.

5. Проводится гидравлический расчёт газопроводов с определением диаметра и перепада давлений согласно формул раздела 3.1.2.

С учётом степени шума, создаваемого движением газа в газопроводах низкого давления, скорости движения газа следует принимать не более 7 м/с.

где - действительная длина газопровода, м; МС - расчётная длина участка местных сопротивлений; - сумма коэффициентов местных сопротивлений участка газопровода длиной l , м.

7. По номограммам приложения Б СП 42-101-2003 определяют фактические величины перепадов давлений для каждого участка.

8. Определяют суммарные потери давления по всему направлению

и сравнивают их с заданными.

При отклонении от принятой величины более 10 % изменяют диаметр газопроводов, начиная с конечных участков основных направлений.

3.4.2. Расчёт кольцевых газовых сетей низкого давления

Порядок проведения расчётов сети.

1. Выбирают основные направления потоков газа, определяют наиболее удаленные концевые точки.

2. Определяют сосредоточенные и удельные путевые расходы газа для всех контуров газовой сети.

3. Определяют путевые, транзитные и расчётные расходы газа по участкам.

4. Исходя из заданного перепада давления в сети для основных направлений оценивают величины ∆P

Во время проектирования трубопровода, выбор размеров труб осуществляется по основанию гидравлического расчета, который определяет внутренний диметр труб для пропуска нужного количества газа при допускаемых потерях давления или, напротив, потери давления при транспортировке нужного количества газа по срубу ранее заданного диаметра. Сопротивление, которое оказывается движению газа в трубопроводе, суммируется из местных сопротивлений и линейных сопротивлений трения: сопротивления трения выполняют свою роль на всей протяженности трубопровода, а местные сопротивления создаются только в пункте изменений направления и скорости движения газа (тройники, углы и т.д.). Подробный гидравлический подсчёт газопроводов выполняется по формулам, которые приведены в CП 42-101-2003, там также учитывается режим движения газа и коэффициенты гидравлического сопротивления газопровода.
***
Так же вы можете использовать Онлайн расчеты , расчёт диаметра газопровода и его размеры. Здесь приводится сокращенный вариант.
***

Для подсчета внутреннего диаметра газопровода можно использовать формулу:

DР= (626AQ0/ρ0 ΔPуд)1/m1

DP – расчетный диаметр. Q0 – расчетный расход газа (м3/ч). ΔРуд – удельные потери давления (ПA/м)

Внутренний диаметр газопровода берется из стандартных внутренних диаметров трубопроводов:: ближайший меньший – для полиэтиленовых газопроводов и ближайший больший – для стальных.

В газопроводах низкого давления, расчётные суммарные потери давления газа принимаются не больше 1.80*10(в третьей степени) ПА, во внутренних газопроводах и газопроводах-вводах – 0,60*10(в третьей степени) ПА.

Для того чтобы рассчитать падение давления нужно определить такой параметр, как число Рейнольдса, которое зависит от характера движения газа. Также нужно определить «λ» -коэффициент гидравлического трения. Число Рейнольдса является безразмерным соотношением, которое отражает – в каком режиме передвигается газ или жидкость: турбулентном и ламинарном.

Существует, так называемое критическое число Рейнольдса, которое равно 2320. Если число Рейнольдса меньше критического значения, то режим является ламинарным, если больше, то турбулентным.

Число Рейнольдса, как критерий перехода с ламинарного режима на турбулентный и обратно актуален для напорных потоков. Если рассматривать переход к безнапорным потоком, то здесь переходная зона между турбулентным и ламинарным режимом возрастает, поэтому использовать число Рейнольдса как критерий, не особо требуется.

Новости по теме:

Натяжные потолки легко комбинируются с различными цветовыми и фактурными вариантами, к тому же они очень легкие. Главной особенностью натяжного потолка является возможность его монтажа по разным наклоном и углом в различных плоскостях. Потолок снабжен бактериальной пленкой, что послужит хорошей защитой от насекомых и позволит монтировать потолок в медицинских и детских учреждениях. Как у любого материала, кроме недостатков есть и небольшие недостатки, тем более данным материал относится к сегменту класса люкс. Итак, минусы: Невозможность демонтирования потолка и установка его снова в том же помещении, так как физические свойства материала не позволяют осуществить такой процесс. Однако как я уже говорил, установка в другом помещении осуществима, но при меньших размерах. Последний...


Сами камины в своей конструкции уже предусматривают вид топлива, который используется для горения. Это может быть жидкое топливо, газ или твердое топливо. Но в большинстве случаев в домах установлены камины на твердом топливе (дрова, каменный уголь, торфобрикет, антрацит). Твердые породы деревьев (береза, дуб, лещина, боярышник, тис, граб, ясень) горят долго, выделяют много теплоэнергии, и дают ровное длинное пламя, но и колоть их трудно. Тополь и все хвойные относятся к мягким породам: прекрасно раскалываются, горят гораздо быстрее. Но их лучше не использовать, так как они смолосодержащие, и эта смола искрит и выделяет при горении вредные для здоровья пары. Наиболее подходящим вариантом будут дрова из дуба, березы, осины либо ольхи. Березовые поленья дают большее количество...


Художественная ковка, представляет собой один метод обработки поверхности металлического типа, что позволяет тем самым создать уникальные изделия, которые сегодня применяются практически во всех областях. В целом можно сказать, что художественный тип ковки, считается достаточно популярным в силу своей нейтральности, потому как он может выглядеть уместно в совершенно разных областях. Одним из основных направлений, где активно используется художественная ковка, является оформление дизайнов интерьеров и приусадебных участков, где как раз красиво будет установить забор кованый. Такой достаточно широкий план использования ковки художественного типа обеспечивается тем, что в силу своей универсальности, она может стать действительно незаменимым элементом. Сейчас любой тип предмета можно...


Выбор обеденного стола – задача непростая и очень ответственная, ведь именно столовая – место, где собирается вся семья. Именно эта комната – воплощение сердца дома. Необходимо подбор предмета интерьера осуществлять с учетом габаритов комнаты таким образом, чтобы он не казался громоздким, при этом не стоит приобретать слишком маленький предмет. Уделить внимание следует ширине, чтобы стол не оказался слишком узким, что не даст возможности аккуратно и удобно сервировать блюда, не должен он быть и слишком широким, что помешает общению. При размещении стола необходимо учитывать, что требуется некоторое место для того, чтобы выдвинуть стул, на что следует зарезервировать минимум метр с каждой стороны. Не только помещению должны соответствовать размеры стола, но и количеству членов семьи. ...


Крайне важно, чтобы в ванной комнате вы чувствовали себя максимально удобно и комфортно. Для этого необходимо правильно подобрать сантехническое оборудование, оформить ванную в соответствии с вашим вкусом. Сегодня мы расскажем, как правильно выбрать такой важный элемент сантехнической зоны, как душевая кабина. Для начала следует определить место - где будет располагаться душевая кабина, замерить расстояние, убедиться, что ничего не помешает открытию дверок, вход будет удобный и свободный. Замерить строительным уровнем ровность пола и стен, чтобы кабина не стояла криво. По материалу рекомендуют выбирать душевые кабины из акрила. Акрил способствует более быстрому нагреванию и более длительному сохранению тепла. Поддон в целях безопасности следует приобретать с рифленой поверхностью, он...

Такая характеристика как зависит от нескольких факторов. Прежде всего, это диаметр трубы, а также тип жидкости, и другие показатели.

Для гидравлического расчета трубопровода вы можете воспользоваться калькулятором гидравлического расчета трубопровода .

При расчете любых систем, основанных на циркуляции жидкости по трубам, возникает необходимость точного определения пропускной способности труб . Это метрическая величина, которая характеризует количество жидкости, протекающее по трубам за определенный промежуток времени. Данный показатель напрямую связан с материалом, из которого изготовлены трубы.

Если взять, к примеру, трубы из пластика , то они отличаются практически одинаковой пропускной способностью на протяжении всего срока эксплуатации. Пластик, в отличие от металла, не склонен к возникновению коррозии, поэтому постепенного нарастания отложений в нем не наблюдается.

Что касается труб из металла , то их пропускная способность уменьшается год за годом. Из-за появления ржавчины происходит отслойка материала внутри труб. Это приводит к шероховатости поверхности и образованию еще большего налета. Особенно быстро этот процесс происходит в трубах с горячей водой.

Далее приведена таблица приближенных значений которая создана для облегчения определения пропускной способности труб внутриквартирной разводки. В данной таблице не учтено уменьшение пропускной способности за счет появления осадочных наростов внутри трубы.

Таблица пропускной способности труб для жидкостей, газа, водяного пара.

Вид жидкости

Скорость (м/сек)

Вода городского водопровода

Вода трубопроводной магистрали

Вода системы центрального отопления

Вода напорной системы в линии трубопровода

Гидравлическая жидкость

до 12м/сек

Масло линии трубопровода

Масло в напорной системе линии трубопровода

Пар в отопительной системе

Пар системы центрального трубопровода

Пар в отопительной системе с высокой температурой

Воздух и газ в центральной системе трубопровода

Чаще всего, в качестве теплоносителя используется обычная вода. От ее качества зависит скорость уменьшения пропускной способности в трубах. Чем выше качество теплоносителя, тем дольше прослужит трубопровод из любого материала (сталь чугун, медь или пластик).

Расчет пропускной способности труб.

Для точных и профессиональных расчетов необходимо использовать следующие показатели:

  • Материал, из которого изготовлены трубы и другие элементы системы;
  • Длина трубопровода
  • Количество точек водопотребления (для системы подачи воды)

Наиболее популярные способы расчета:

1. Формула. Достаточно сложная формула, которая понятна лишь профессионалам, учитывает сразу несколько значений. Основные параметры, которые принимаются во внимание - материал труб (шероховатость поверхности) и их уклон.

2. Таблица. Это более простой способ, по которому каждый желающий может определить пропускную способность трубопровода. Примером может послужить инженерная таблица Ф. Шевелева, по которой можно узнать пропускную способность, исходя из материала трубы.

3. Компьютерная программа. Одну из таких программ легко можно найти и скачать в сети Интернет. Она разработана специально для того, чтоб определить пропускную способность для труб любого контура. Для того что узнать значение, необходимо ввести в программу исходные данные, такие как материал, длина труб, качество теплоносителя и т.д.

Следует сказать, что последний способ, хоть и является самым точным, не подходит для расчетов простых бытовых систем. Он достаточно сложен, и требует знания значений самых различных показателей. Для расчета простой системы в частном доме лучше воспользоваться таблицами.

Пример расчета пропускной способности трубопровода.

Длина трубопровода - важный показатель при расчете пропускной способности Протяженность магистрали оказывает существенное влияние на показатели пропускной способности. Чем большее расстояние проходит вода, тем меньшее давление она создает в трубах, а значит, скорость потока уменьшается.

Приводим несколько примеров. Опираясь на таблицы, разработанные инженерами для этих целей.

Пропускная способность труб:

  • 0,182 т/ч при диаметре 15 мм
  • 0,65 т/ч с диаметром трубы 25 мм
  • 4 т/ч при диаметре 50 мм

Как можно увидеть из приведенных примеров, больший диаметр увеличивает скорость потока. Если диаметр увеличить в 2 раза, то пропускная способность тоже возрастет. Эту зависимость обязательно учитывают при монтаже любой жидкостной системы, будь то водопровод, водоотведение или теплоснабжение. Особенно это касается отопительных систем, так как в большинстве случаев они являются замкнутыми, и от равномерной циркуляции жидкости зависит теплоснабжение в здании.

Б.К. Ковалев, заместитель директора по НИОКР

В последнее время все чаще приходится сталкиваться с примерами, когда оформление заказов на промышленное газовое оборудование ведут менеджеры, не имеющие достаточного опыта и технических знаний в отношении предмета закупок. Иногда результатом становится не вполне корректная заявка или принципиально неверный подбор заказываемого оборудования. Одной из наиболее распространенных ошибок является выбор номинальных сечений входного и выходного трубопроводов газораспределительной станции, сориентированный только на номинальные значения давления газа в трубопроводе без учета скорости потока газа. Цель данной статьи – выдача рекомендаций по определению пропускной способности трубопроводов ГРС, позволяющих при выборе типоразмера газораспределительной станции проводить предварительную оценку ее производительности для конкретных значений рабочих давлений и номинальных диаметров входного и выходного трубопроводов.

При выборе необходимых типоразмеров оборудования ГРС одним из основных критериев является производительность, которая в значительной мере зависит от пропускной способности входного и выходного трубопроводов.

Пропускная способность трубопроводов газораспределительной станции рассчитывается с учетом требований нормативных документов, ограничивающих максимально допустимую скорость потока газа в трубопроводе величиной 25м/с. В свою очередь, скорость потока газа зависит главным образом от давления газа и площади сечения трубопровода, а также от сжимаемости газа и его температуры.

Пропускную способность трубопровода можно рассчитать из классической формулы скорости движения газа в газопроводе (Справочник по проектированию магистральных газопроводов под редакцией А.К. Дерцакяна, 1977):

где W - скорость движения газа в газопроводе, м/сек;
Q - расход газа через данное сечение (при 20°С и 760 мм рт. ст.), м 3 /ч;
z - коэффициент сжимаемости (для идеального газа z = 1);
T = (273 + t °C) - температура газа, °К;
D - внутренний диаметр трубопровода, см;
p = (Pраб + 1,033) - абсолютное давление газа, кгс/см 2 (атм);
В системе СИ (1 кгс/см 2 = 0,098 МПа; 1 мм = 0,1 см) указанная формула примет следующий вид:

где D - внутренний диаметр трубопровода, мм;
p = (Pраб + 0,1012) - абсолютное давление газа, МПа.
Отсюда следует, что пропускная способность трубопровода Qmax, соответствующая максимальной скорости потока газа w = 25м/сек, определяется по формуле:

Для предварительных расчетов можно принять z = 1; T = 20?С = 293 ?К и с достаточной степенью достоверности вести вычисления по упрощенной формуле:

Значения пропускной способности трубопроводов с наиболее распространенными в ГРС условными диаметрами при различных величинах давления газа приведены в таблице 1.

Рраб.(МПа) Пропускная способность трубопровода (м?/ч),
при wгаза=25 м/с; z = 1; T= 20?С = 293?К
DN 50 DN 80 DN 100 DN 150 DN 200 DN 300 DN 400 DN 500

Примечание: для предварительной оценки пропускной способности трубопроводов, внутренние диаметры труб приняты равными их условным величинам (DN 50; 80; 100; 150; 200; 300; 400; 500).

Примеры пользования таблицей:

1. Определить пропускную способность ГРС с DNвх=100мм, DNвых=150мм, при PNвх=2,5 – 5,5 МПа и PNвых=1,2 МПа.

Из таблицы 1 находим, что пропускная способность выходного трубопровода DN=150мм при PN=1,2 МПа составит 19595 м 3 /ч, в то же время входной трубопровод DN=100мм при PN=5,5 МПа сможет пропустить 37520 м 3 /ч, а при PN=2,5 МПа - только 17420 м 3 /ч. Таким образом, данная ГРС при PNвх=2,5 – 5,5 МПа и PNвых=1,2 МПа сможет максимально пропустить от 17420 до 19595 м 3 /ч. Примечание: более точные значения Qmax можно получить из формулы (3).

2. Определить диаметр выходного трубопровода ГРС, производительностью 5000 м 3 /ч при Pвх=3,5 МПа для выходных давлений Pвых1=1,2 МПа и Pвых2=0,3 МПа.

Из таблицы 1 находим, что пропускную способность 5000м 3 /час при Pвых=1,2 МПа обеспечит трубопровод DN=80мм, а при Pвых=0,3 МПа - только DN=150мм. При этом на входе ГРС достаточно иметь трубопровод DN=50мм.

31130 0 22

Пропускная способность трубы: просто о сложном

Как меняется пропускная способность трубы в зависимости от диаметра? Какие факторы, помимо поперечного сечения, влияют на этот параметр? Наконец, как рассчитать, пусть приблизительно, проходимость водопровода при известном диаметре? В статье я постараюсь дать на эти вопросы максимально простые и доступные ответы.

Наша задача — научиться рассчитывать оптимальное сечение водопроводных труб.

Зачем это нужно

Гидравлический расчет позволяет получить оптимальное минимальное значение диаметра водопровода.

С одной стороны, денег при строительстве и ремонте всегда катастрофически не хватает, а цена погонного метра труб растет с увеличением диаметра нелинейно. С другой — заниженное сечение водопровода приведет к чрезмерному падению напора на концевых приборах из-за его гидравлического сопротивления.

При расходе на промежуточном приборе падение напора на концевом приведет к тому, что температура воды при открытых кранах ХВС и ГВС резко изменится. В результате вас либо окатит ледяной водой, либо ошпарит кипятком.

Ограничения

Я намеренно ограничу область рассматриваемых задач водопроводом небольшого частного дома. Причины две:

  1. Газы и жидкости разной вязкости ведут себя при транспортировке по трубопроводу абсолютно по-разному. Рассмотрение поведения природного и сжиженного газа, нефти и прочих сред увеличило бы объем этого материала в несколько раз и увело бы нас далеко от моей специализации — сантехники;
  2. В случае большого здания с многочисленными сантехническими приборами для гидравлического расчета водопровода придется рассчитывать вероятность одновременного использования нескольких точек водоразбора. В небольшом доме расчет выполняется для пикового потребления всеми имеющимися приборами, что сильно упрощает задачу.

Факторы

Гидравлический расчет системы водоснабжения — это поиск одной из двух величин:

  • Расчет пропускной способности трубы при известном сечении;
  • Расчет оптимального диаметра при известном планируемом расходе.

В реальных условиях (при проектировании водопровода) куда чаще приходится выполнять вторую задачу.

Бытовая логика подсказывает, что максимальный расход воды через трубопровод определяется его диаметром и давлением на входе. Увы, реальность гораздо сложнее. Дело в том, что у трубы есть гидравлическое сопротивление : попросту говоря, поток тормозит за счет трения о стенки. Причем материал и состояние стенок предсказуемо влияют на степень торможения.

Вот полный список факторов, влияющих на производительность водопроводной трубы:

  • Давление в начале водопровода (читай — давление в трассе);
  • Уклон трубы (изменение ее высоты над условным уровнем грунта в начале и конце);

  • Материал стенок. Полипропилен и полиэтилен имеют куда меньшую шероховатость, чем сталь и чугун;
  • Возраст трубы. Со временем сталь обрастает ржавчиной и известковыми отложениями, которые не только увеличивают шероховатость, но и снижают внутренний просвет трубопровода;

Это не относится к стеклянным, пластиковым, медным, оцинкованным и металлополимерным трубам. Они и через 50 лет эксплуатации находятся в состоянии новых. Исключение — заиливание водопровода при большом количестве взвесей и отсутствии фильтров на входе.

  • Количество и угол поворотов ;
  • Изменения диаметра водопровода;
  • Наличие или отсутствие сварных швов, грата от пайки и соединительных фитингов;

  • Запорная арматура . Даже полнопроходные шаровые краны оказывают движению потока определенное сопротивление.

Любой расчет пропускной способности трубопровода будет весьма приблизительным. Волей-неволей нам придется использовать усредненные коэффициенты, типичные для близких к нашим условий.

Закон Торричелли

Живший в начале 17 века Эванджелиста Торричелли известен как ученик Галилео Галилея и автор самого понятия атмосферного давления. Ему принадлежит и формула, описывающая расход воды, выливающейся из сосуда через отверстие известных размеров.

Для работоспособности формулы Торричелли необходимо:

  1. Чтобы нам был известен напор воды (высота водяного столба над отверстием);

Одна атмосфера при земной гравитации способна поднять водяной столб на 10 метров. Поэтому давление в атмосферах пересчитывается в напор простым умножением на 10.

  1. Чтобы отверстие было существенно меньше диаметра сосуда , исключая, таким образом, потерю напора за счет трения о стенки.

На практике формула Торрричелли позволяет рассчитать расход воды через трубу с внутренним сечением известных размеров при известном мгновенном напоре во время расхода. Проще говоря: чтобы воспользоваться формулой, нужно установить манометр перед краном или рассчитать падение напора на водопроводе при известном давлении в трассе.

Сама формула выглядит так: v^2=2gh. В ней:

  • v — скорость потока на выходе из отверстия в метрах в секунду;
  • g — ускорение падения (для нашей планеты оно равно 9,78 м/с^2);
  • h — напор (высота водяного столба над отверстием).

Чем это поможет в нашей задаче? А тем, что расход жидкости через отверстие (та самая пропускная способность) равен S*v , где S — площадь сечения отверстия, а v — скорость потока из приведенной выше формулы.

Капитан Очевидность подсказывает: зная площадь сечения, нетрудно определить внутренний радиус трубы. Как известно, площадь круга вычисляется как π*r^2, где π округленно берется равным 3,14159265.

В этом случае формула Торричелли будет иметь вид v^2=2*9,78*20=391,2. Квадратный корень из 391,2 округленно равен 20. Значит, вода будет выливаться из отверстия со скоростью 20 м/с.

Вычисляем диаметр отверстия, через которое изливается поток. Переведя диаметр в единицы СИ (метры), получаем 3,14159265*0,01^2=0,0003141593. А теперь вычисляем расход воды: 20*0,0003141593=0,006283186, или 6,2 литра в секунду.

Обратно в реальность

Уважаемый читатель, рискну предположить, что у вас перед смесителем не установлен манометр. Очевидно, что для более точного гидравлического расчета нужны какие-то дополнительные данные.

Обычно расчетная задача решается от обратного: при известных расходе воды через сантехнические приборы, длине водопровода и его материале подбирается диаметр, обеспечивающий падение напора до приемлемых значений. Ограничивающим фактором выступает скорость потока.

Справочные данные

Нормой скорости потока для внутренних водопроводов считаются 0,7 — 1,5 м/с. Превышение последнего значения приводит к появлению гидравлических шумов (в первую очередь — на изгибах и фитингах).

Нормы расхода воды для сантехприборов несложно отыскать в нормативной документации. В частности, их приводит приложение к СНиП 2.04.01-85. Чтобы избавить читателя от длительных поисков, я приведу здесь эту таблицу.

В таблице приведены данные для смесителей с аэраторами. Их отсутствие уравнивает расход через смесители мойки, умывальника и душевой кабины с расходом через смеситель при наборе ванны.

Напомню, что если вы хотите своими руками рассчитать водопровод частного дома, суммируйте расход воды для всех установленных приборов . Если эта инструкция не соблюдается, вас будут ждать сюрпризы вроде резкого падения температуры в душе при открытии крана горячей воды на .

Если в здании присутствует пожарный водопровод, к плановому расходу добавляется 2,5 л/с на каждый гидрант. Для пожарного водопровода скорость потока ограничивается значением в 3 м/с : при пожаре гидравлические шумы — это последнее, что будет нервировать жильцов.

При расчете напора обычно исходят из того, что на крайнем от ввода приборе он должен быть не менее 5 метров, что соответствует давлению 0,5 кгс/см2. Часть сантехнических приборов (проточные водонагреватели, заливные клапаны автоматических стиральных машин и т.д.) просто не срабатывают, если давление в водопроводе ниже 0,3 атмосфер. Кроме того, приходится учитывать гидравлические потери на самом приборе.

На фото — проточный водонагреватель Atmor Basic. Он включает нагрев лишь при давлении 0,3 кгс/см2 и выше.

Расход, диаметр, скорость

Напомню, что они увязываются между собой двумя формулами:

  1. Q = SV . Расход воды в кубометрах в секунду равен площади сечения в квадратных метрах, умноженной на скорость потока в метрах в секунду;
  2. S = π r ^2. Площадь сечения высчитывается как произведение числа «пи» и квадрата радиуса.

Где взять значения радиуса внутреннего сечения?

  • У стальных труб он с минимальной погрешностью равен половине ДУ (условного прохода, которым маркируется трубный прокат);
  • У полимерных, металлополимерных и т.д. внутренний диаметр равен разности между наружным, которым маркируются трубы, и удвоенной толщиной стенки (она тоже обычно присутствует в маркировке). Радиус, соответственно, представляет собой половину внутреннего диаметра.

  1. Внутренний диаметр равен 50-3*2=44 мм, или 0,044 метра;
  2. Радиус составит 0,044/2=0,022 метра;
  3. Площадь внутреннего сечения будет равной 3,1415*0,022^2=0,001520486 м2;
  4. При скорости потока 1,5 метра в секунду расход будет равным 1,5*0,001520486=0,002280729 м3/с, или 2,3 литра в секунду.

Потеря напора

Как вычислить, сколько напора теряется на водопроводе с известными параметрами?

Простейшая формула расчета падения напора имеет вид H = iL(1+K). Что означают переменные в ней?

  • H — заветное падение напора в метрах;
  • i — гидравлический уклон метра водопровода ;
  • L — длина водопровода в метрах;
  • K — коэффициент , позволяющий упростить расчет падения напора на запорной арматуре и . Он привязан к назначению водопроводной сети.

Где взять значения этих переменных? Ну, кроме длины трубы — рулетку-то пока никто не отменял.

Коэффициент К принимается равным:

С гидравлическим уклоном картина куда сложнее. Сопротивление, оказываемое трубой потоку, зависит от:

  • Внутреннего сечения;
  • Шероховатости стенок;
  • Скорости потока.

Список значений 1000i (гидравлического уклона на 1000 метров водопровода) можно найти в таблицах Шевелева, которые, собственно, и служат для гидравлического расчета. Объем таблиц слишком велик для статьи, поскольку они приводят значения 1000i для всех возможных диаметров, скоростей потока и материалов с поправкой на срок службы.

Вот небольшой фрагмент таблицы Шевелева для пластмассовой трубы размером 25 мм.

Автор таблиц приводит значения падения напора не для внутреннего сечения, а для стандартных размеров, которыми маркируются трубы, с поправкой на толщину стенок. Однако таблицы были изданы в 1973 году, когда соответствующий сегмент рынка еще не сформировался.
При расчете учтите, что для металлопластика лучше брать значения, соответствующие трубе на шаг меньшего размера.

Давайте, пользуясь этой таблицей, вычислим падение напора на полипропиленовой трубе диаметром 25 мм и длиной 45 метров. Условимся, что мы проектируем водопровод хозяйственно-бытового назначения.

  1. При максимально близкой к 1,5 м/с скорости потока (1,38 м/с) значение 1000i будет равным 142,8 метра;
  2. Гидравлический уклон одного метра трубы будет равным 142,8/1000=0,1428 метра;
  3. Коэффициент поправки для бытовых водопроводов равен 0,3;
  4. Формула в целом приобретет вид H=0,1428*45(1+0,3)=8,3538 метра. Значит, на конце водопровода при расходе воды 0,45 л/с (значение из левого столбца таблицы) давление упадет на 0,84 кгс/см2 и при 3 атмосферах на входе составит вполне приемлемые 2,16 кгс/см2.

Этим значением можно воспользоваться, чтобы определить расход согласно формуле Торричелли . Способ расчета с примером приведен в соответствующем разделе статьи.

Кроме того, чтобы вычислить максимальный расход через водопровод с известными характеристиками, можно выбрать в столбце «расход» полной таблицы Шевелева такое значение, при котором давление в конце трубы не упадет ниже 0,5 атмосферы .

Заключение

Уважаемый читатель, если приведенная инструкция, несмотря на предельную упрощенность, все же показались вам утомительной — просто воспользуйтесь одним из многочисленных онлайн-калькуляторов . Как всегда, дополнительную информацию можно найти в видео в этой статье. Я буду признателен за ваши дополнения, поправки и комментарии. Успехов, камрады!

31 июля 2016г.

Если вы хотите выразить благодарность, добавить уточнение или возражение, что-то спросить у автора - добавьте комментарий или скажите спасибо!