Котел дквр 20 13 компоновка. барабаном с низкой компоновкой

Рисунок 1. Конструкция котла ДКВР 20-13

1. Барабан котла

2. Топка котла

3. Экономайзер

4. Горелка

5. Паровая магистраль

6. Запальное устройство

7. Дымосос

8. Дутьевой вентилятор

1.2 Описание технологии агрегата с таблицей технологических параметров

Паровым котлом называется комплекс агрегатов, предназначенных для получения водяного пара. Этот комплекс состоит из ряда теплообменных устройств, связанных между собой и служащих для передачи тепла от продуктов сгорания топлива к воде и пару. Исходным носителем энергии, наличие которого необходимо для образования пара из воды, служит топливо.

Работа котла состоит из следующих процессов:

1. Сжигание поступающего в топку топлива. В нём участвуют топливо-газ и воздух. В результате образуются дымовые газы, нагретые до высокой температуры.

2. Передача тепла от продуктов сгорания стенкам котла и от них к воде.

3. Нагревание воды до кипения и превращение её в пар.

4. Отвод дымовых газов из газоходов в атмосферу.

Исходным носителем энергии служит топливо. Топливо, поступающее по газопроводу, смешивается в горелке с воздухом и сгорает в топке. Воздух, необходимый для сгорания, забирается из верхней зоны помещения котельной.

Горение топлива является сплошным физико-химическим процессом. Химическая сторона горения представляет собой процесс окисления его горючих элементов кислородом, проходящий при определенной температуре и сопровождающийся выделением тепла. Интенсивность горения, а так же экономичность и устойчивость процесса горения топлива зависят от способа подвода и распределения воздуха между частицами топлива. Условно принято процесс сжигания топлива делить на три стадии: зажигание, горение и дожигание. Эти стадии в основном протекают последовательно во времени, частично накладываются одна на другую.

Расчет процесса горения обычно сводится к определению количества воздуха в м 3 ,необходимого для сгорания единицы массы или объема топлива количества и состава теплового баланса и определению температуры горения.

Значение теплоотдачи заключается в теплопередаче тепловой энергии, выделяющейся при сжигании топлива, воде, из которой необходимо получить пар, или пару, если необходимо повысить его температуру выше температуры насыщения.

Тепло выделяется при сгорании топлива, передаётся воде через поверхности нагретого котла излучением в топке и конвекций от нагретых газообразных продуктов сгорания в газоходах котла.

Поверхности нагрева выполняются в виде труб. Внутри труб происходит непрерывная циркуляция воды, а снаружи они омываются горячими топочными газами или воспринимают тепловую энергию лучеиспусканием.

Таким образом, в котлоагрегате имеют место все виды теплопередачи: теплопроводность, конвекция и лучеиспускание. Соответственно поверхности нагрева подразделяется на конвективные и радиационные. Количество тепла, передаваемое через единицу площади нагрева в единицу времени носит название теплового напряжения поверхности нагрева.

Образование пара в котлоагрегатах протекает с определенной последовательностью. Уже в экранных трубах начинается образование пара. Этот процесс протекает при больших температуре и давлении. Явление испарения заключается в том, что отдельные молекулы жидкости, находящиеся у ее поверхности и обладающие высокими скоростями, а следовательно, и большей по сравнению с другими молекулами кинетической энергией, преодолевая силовые воздействия соседних молекул, создающее поверхностное натяжение, вылетают в окружающее пространство. С увеличением температуры интенсивность испарения возрастает. Процесс обратный парообразованию называют конденсацией. Жидкость, образующуюся при конденсации, называют конденсатом. Она используется для охлаждения поверхностей металла в пароперегревателях.

Конденсат отработавшего пара, вернувшийся от потребителя, направляется в диоэратор, который служит для удаления из воды воздуха и активных газов. Туда же насосами подаётся добавочная химически очищенная вода.

После диоэрации вся питательная вода подаётся в водяной экономайзер, где за счёт тепла выходящих газов вода подогревается и поступает в верхний барабан, затем в систему экранных труб, где происходит процесс парообразования. Уходящие газы из топки, отдавая тепло на подогрев питательной воды, охлаждаются и дымососом удаляются через трубу в атмосферу.

В процессе парообразования вместе с паром выносятся в паровое пространство мельчайшие капельки воды, которые попадают в трубопровод, испаряются, а содержащиеся в них соли оседают на внутренних стенках в виде накипи, что может привести к увеличению теплового сопротивления труб.

С целью поддержания такой концентрации солей, при которой не происходит их выпадение из раствора, проводят продувку.

Путём продувки выводится некоторая часть воды и вместе с ней удаляются соли в таком количестве, в котором они поступают с питательной водой.

В верхнем барабане установлены сепарационные устройства для выделения капелек воды от пара.

Пар, образуемый в котлоагрегате, подразделяется на насыщенный и перегретый. Насыщенный пар в свою очередь делится на сухой и влажный. Так как на теплоэлектростанциях требуется перегретый пар, то для его перегрева устанавливается пароперегреватель, в данном случае ширмовой и коньюктивный, в которых для перегрева пара используется тепло, полученное в результате сгорания топлива и отходящих газов. Полученный перегретый пар при температуре Т=540 С и давлении Р=100 атм. идет на технологические нужды.

Таблица 1 – Технологические параметры

Наименование параметра

Диапазон

Паропроизводительность

Температура природного газа

Температура отходящих газов

Температура питательной воды

Давление в барабане котла

Давление пара перед горелками

Давление пара

Давление газа

Давление воды в питательной магистрали

Температура перегретого газа

Разряжение в топке

Расход питательной воды

Расход природного газа

Паровой котел ДКВр-20-13 ГМ -вертикально-водотрубный котёл с экранированной топочной камерой и кипятильным пучком, которые выполнены по конструктивной схеме «Д». Отличительной чертой данной схемы является боковое расположение конвективной части котла относительно топочной камеры.

ОБЩИЙ ВИД КОТЛА ДКВР-20-13 ГМ БАЗОВАЯ И ДОПОЛНИТЕЛЬНАЯ КОМПЛЕКТАЦИИ КОТЛА ДКВР-20-13 ГМ
Базовая комплектация россыпью Котел россыпью, лестницы и площадки, горелки ГМГ-5 - 3 шт.
Базовая комплектация в сборе 3 блока(конвективный,передний и задний топочные), лестницы и площадки, горелки ГМГ-5 - 3 шт.
Дополните льная комплектиция Экономайзер БВЭС-V-1 или Экономайзер чугунный ЭБ-1-808
Воздухоподогреватель ВП-О-228
Вентилятор ВДН-12,5-1000
Дымосос ДН-13-1500
Водоуказательные приборы и арматура к котлу ДКВр-20-13 ГМ
УСТРОЙСТВО И ПРИНЦИПЫ РАБОТЫ ДКВР-20-13 ГМ

Котёл ДКВр-20-13 ГМ - паровой котёл, основными элементами которого являются два барабана: верхний короткий и нижний, а также экранированная топочная камера.

У котлов ДКВр-20-13 ГМ топка делится на две части: собственно топку и камеру догорания, отделённую от топки задним экраном котла. Горячие газы омывают кипятильные трубы котла прямым током по всей ширине пучка без перегородок. При наличии пароперегревателя часть этих труб не устанавливается. Пароперегреватель состоит их двух пакетов, расположенных с двух сторон котла. Перегретый пар отводится из обоих пакетов в сборный коллектор. Питательная вода подаётся в верхний барабан.

Стенки верхнего барабана охлаждаются потоком пароводяной смеси, выходящим из труб боковых экранов и труб передней части конвективного пучка.

Предохранительные клапаны, главный паровой вентиль или задвижка, вентили для отбора проб пара, отбора пара на собственные нужды (обдувку) располагаются на верхней образующей верхнего барабана.

Питательная труба находится в водном пространстве верхнего барабана, в паровом объёме - сепарационные устройства. В нижнем барабане размещены перфорированная труба для продувки, устройство для прогрева барабана при растопке и штуцер для спуска воды.

Для наблюдения за уровнем воды в верхнем барабане устанавливаются два указателя уровня.

Для отбора импульсов уровня воды на автоматику на переднем днище верхнего барабана установлено два штуцера.

Опускные и пароотводящие трубы привариваются к коллекторам и барабанам (или к штуцерам на барабанах). При питании экранов из нижнего барабана для предотвращения попадания в них шлама, концы опускных труб выведены в верхнюю часть барабана.

Шамотная перегородка, отделяющая камеру догорания от пучка, опирается на чугунную опору, укладываемую на нижний барабан.

Чугунная перегородка между первым и вторым газоходами собирается на болтах из отдельных плит с предварительным промазыванием стыков специальной замазкой или с прокладкой асбестового шнура, пропитанного жидким стеклом. В перегородке имеется отверстие для прохода трубы стационарного обдувочного прибора.

Окно для выхода газов из котла расположено на задней стенке.

В котле ДКВр-20-13 ГМ температура перегретого пара не регулируется.

Площадки котла ДКВр-20-13 ГМ расположены в местах, необходимых для обслуживания арматуры и гарнитуры котла:

  • боковая площадка для обслуживания водоуказательных приборов
  • боковая площадка для обслуживания предохранительных клапанов и запорной арматуры на барабане котла;
  • площадка на задней стенке котла для обслуживания доступа в верхний барабан при ремонте котла.

На боковые площадки ведут лестницы, а на заднюю площадку - вертикальный трап.

Пароохладитель, установленный в нижнем барабане, имеет дренажный вентиль на соединительных паропроводах. Для регулирования количества поступающего в пароохладитель пара на перемычке между прямым и обратным паропроводами поставлен вентиль.

Для доступа в топочную камеру имеется лаз. Для шуровки топлива вблизи боковых стен, в зависимости от топочного устройства, сделаны шуровочные лючки. Два таких лючка установлены на боковых стенах камеры догорания в её нижней части. На боковых стенах котлов в области конвективного пучка предусмотрены лючки для очистки конвективных труб переносным обдувочным аппаратом.

Для контроля за состоянием изоляции нижней части верхнего барабана в топочной камере устанавливается лючок в месте разрежения труб бокового экрана.

В нижней части газохода с левой стороны котла размещены лазы для периодического удаления золы, осмотра пучка и эжекторов возврата уноса. Для наблюдения за изоляцией верхнего барабана в верхней части топки котлов предусматривается установка лючков.

Перевод парового котла ДКВр-20-13 ГМ в водогрейный режим позволяет, кроме повышения производительности котельных установок и уменьшения затрат на собственные нужды, связанные с эксплуатацией питательных насосов, теплообменников сетевой воды и оборудования непрерывной продувки, а также сокращения расходов на подготовку воды, существенно снижать расход топлива.

Среднеэксплуатационный КПД котлоагрегатов, использованных в качестве водогрейных, повышается на 2,0-2,5%.

Котельные с котлами ДКВр комплектуются вентиляторами и дымососами типа ВДН и ДН, блочными водоподготовительными установками ВПУ, фильтрами для осветления и умягчения воды ФОВ и ФиПА, термическими деаэраторами типа ДА, теплообменными устройствами, насосами, а также комплектами автоматики.

ОСОБЕННОСТИ КОНСТРУКЦИИ КОТЛА ДКВР-20-13 ГМ

В котле ДКВр-20-13 ГМ применяется двухступенчатая схема испарения с установкой во второй ступени выносных циклонов. Это позволяет уменьшить процент продувки и улучшить качество пара при работе на питательной воде с повышенным солесодержанием. Во вторую ступень испарения входит часть труб боковых экранов переднего топочного блока. В котельный пучок вода подаётся из верхнего барабана через обогреваемые трубы последних рядов самого пучка.

Питание второй ступени испарения осуществляется из нижнего барабана. Выносные циклоны используются в качестве сепарационных устройств. Вода из циклонов поступает в нижние коллекторы экранов, а пар направляется в верхний барабан вместе с паром первой ступени испарения и дополнительно очищается, проходя через жалюзи и дырчатый лист. Непрерывная продувка второй ступени испарения ведётся из выносных циклонов.

В первой и второй ступенях испарения для постоянного контроля за соблюдением норм котловой воды на каждом котле должны быть установлены по два холодильника для отбора проб питательной воды.

Котлы ДКВр-20-13 ГМ снабжены рециркуляционными трубами, которые расположены в обмуровке боковых стенок топки, что повышает надёжность работы циркуляционных контуров боковых экранов. В верхних барабанах размещаются сепарационные и питательные устройства, нижние барабаны являются шламоотстойниками. По окружности верхнего барабана, в области труб экранов и подъемных труб котельного пучка, установлены щитки, подающие пароводяную смесь на зеркало испарения.

Для сжигания топлива котёл ДКВр-20-13 ГМ комплектуется газомазутными горелками типа ГМ.

Котёл ДКВр-20-13 ГМ имеет три опорные рамы: две – под два топочных блока и одна – под конвективный блок.

Неподвижной, жестко закрепленной точкой котла ДКВр-20-13 ГМ является передняя опора нижнего барабана. Остальные опоры нижнего барабана и камер боковых экранов выполнены скользящими. Для контроля за перемещением элементов котла выполняется установка реперов.

Камеры фронтового и заднего экранов крепятся кронштейнами к обвязочному каркасу, при этом одна из опор может быть неподвижной, а другая – подвижной. Камеры боковых экранов крепятся к специальным опорам.

Завод поставляет котлы ДКВр-20-13 ГМ тремя блоками:

  • конвективный блок, состоящий из верхнего и нижнего барабанов с питательными и паросепарационными устройствами, кипятильного пучка и опорной рамы;
  • два блока топочной камеры, состоящие из экранных труб, камер экранов и опорных рам;

в комплекте с КИП, арматурой и гарнитурой в пределах котла, лестницами, площадками, пароперегревателем (по требованию заказчика). Изоляционные и обмуровочные материалы в комплект поставки не входят.

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ ДКВР-20-13
Показатель Значение
Тип котла Паровой
Вид расчетного топлива Газ, Жидкое топливо
Паропроизводительность, т/ч 20
Рабочее (избыточное) давление теплоносителя на выходе, МПа (кгс/см) 1,3(13,0)
Температура пара на выходе, °С насыщ. 194
Температура питательной воды, °С 100
Расчетный КПД (топливо газ), % 92
Расчетный КПД (топливо жидкое), % 90
Расход расчетного топлива (топливо газ) , кг/ч (м3/ч - для газа и жидкого топлива) 1470
Расход расчетного топлива (топливо жидкое) , кг/ч (м3/ч - для газа и жидкого топлива) 1400
Габариты транспортабельного блока, LxBxH, мм 5350x3214x3992/ 5910x3220x2940/ 5910x3220x3310
Габариты компоновки, LxBxH, мм 11500х5970х7660
Масса котла без топки (в объеме заводской поставки), кг 44634

Государственный комитет РФ по высшему образованию

Пермский государственный технический университет

Кафедра электрификации и автоматизации

горных предприятий

Группа ЭПУ-01 КУРСОВОЙ ПРОЕКТ

Автоматизация парового котла ДКВР 20 - 13

Выполнил: студент Сопов С. А.

Проверил: преподаватель Сажин Р.А.


Пермь 2005 г.

1. Краткое описание котельной.

2. Автоматизация парового котла.


3. Выбор системы автоматизации


КРАТКОЕ ОПИСАНИЕ КОТЕЛЬНОЙ



Котельная Теплогорского литейно-механического завода предназначена для выработки пара отпускаемого для приготовления горячей воды и отопления цехов. Система теплоснабжения закрытая. Топливом для котельной служит газ теплотой сгорания Q н = 8485 ккал/м 3 . Котельная оборудована двумя котлами ДКВР - 20/13 без пароперегревателей. Производительность котла в соответствии с расчетными данными 28 т/час. Давление пара 13 кгс/см 2 . Максимальное количество тепла, выдаваемого котельной в виде горячей воды составляет 100% . Возврат конденсата 10% . Исходная вода для питания котлов - речная осветленная или артезианская. Котельный агрегат ДКВР - 20/13 рис.3 комплектуется одноходовым чугун

Рис.1 Котел марки ДКВР.

1- экранные трубы; 2- верхний барабан; 3- манометр; 4- предохранительные клапаны; 5- трубы питательной воды; 6- сепаратор пара; 7- предохранительная пробка; 8- камера догорания; 9- перегородки; 10- конвективные трубки; 11- обдувочное устройство; 12- нижний барабан; 13- продувочный трубопровод.


ным экономайзером системы ВТН с трубами длиной 3м. Регулятор питания установлен до ВЭК, неотключаемый как по газу, так и по воде. Предусмотрена сгонная линия с автоматическим устройством для ограничения повышения температуры воды после ВЭК выше 174 0 С. Движение газов в экономайзере сверху вниз. Газы из экономайзера направляются к дымососу, установленному в стенах котельной. Дутьевой вентилятор монтируется под котлом. Забор воздуха вентилятором осуществляется по металлическому воздуховоду. Нагнетательный воздух к горелочному устройствам проходит в фундаменте котла. Котел оборудован тремя газомазутными горелками ГМГП рис.2.

Номинальная тепловая мощность горелки ГМГП-120 - 1,75 МВт. Она предназначена для совместного сжигания газа и мазута. Распыл мазута обеспечивается водяным паром. Горелка снабжена диффузором (6), задающим угол раскрытия факела, и имеет раздельные газовые (4) и мазутные (5) сопла. Воздух подается в межсопловое пространство. Благодаря утопленному положению сопел на выходе горелки создается эжекционный эффект. Конструкция горелки обеспечивает легкий розжиг печи при пуске установки (подача только газа), хорошее смешение распыленного жидкого топлива с воздухом, подсос дымовых газов в корень факела (эжекционный эффект). Подача воздуха в межсопловое пространство (между потоков газа и жидкого топлива) создает условия двухстадийного сжигания топлива.

На рис.2 показан профиль пламени форсунки ГМГП-120 с двухфронтальным сгоранием топлива. Первичный воздух подается в межсопловое пространство с коэффициентом избытка воздуха ~1,0 и смешивается с жидким топливом. Испарившееся горючее и кислород воздуха поступают во внутренний фронт горения, где происходит неполное сгорание. Продукты химического недожога практически полностью сгорают во внешнем фронте пламени. Кислород во внешний фронт последнего поступает диффузией из воздуха, подсасываемого через амбразуру форсунки в топочное пространство. Суммарный коэффициент избытка воздуха а составляет 1,10–1,15. Кроме этого, за счет эжекционного эффекта в корень факела подсасываются дымовые газы, понижая содержание кислорода в подаваемом в межсопловое пространство воздухе, что приводит к понижению температуры горения на 50–70°С.
Понижение температуры горения замедляет скорость химических реакций и приводит к заметному удлинению факела пламени. Учитывая, что в технологической печи около 80% тепла передается радиацией, то радиационный тепловой поток остается практически неизменным и сохраняется тепловой баланс печи.

Котлы ДКВР состоят из следующих основных частей: двух барабанов (верхний и нижний); экранных труб; экранных коллекторов (камер).

Барабаны котлов на давление 13 кгс/см 2 имеют одинаковый внутренний диаметр (1000 мм) при толщине стенок 13 мм.

Для осмотра барабанов и расположенных в них устройств, а также для очистки труб шарошками на задних днищах имеются лазы; у котла ДКВР-20 с длинным барабаном имеется еще лаз на переднем днище верхнего барабана.

Для наблюдения за уровнем воды в верхнем барабане установлены два водоуказательных стекла и сигнализатор уровня. У котлов с длинным барабаном водоуказательные стекла присоединены к цилиндрической части барабана, а у котлов с коротким барабаном к переднему днищу. Из переднего днища


верхнего барабана отведены импульсные трубки к регулятору питания. В водяном пространстве верхнего барабана находятся питательная труба, у котлов ДКВР 20-13 с длинным барабаном - труба для непрерывной продувки; в паровом объеме - сепарационные устройства. В нижнем барабане установлены перфорированная труба для периодической продувки, устройство для прогрева барабана при растопке и штуцер для спуска воды.

Боковые экранные коллекторы расположены под выступающей частью верхнего барабана, возле боковых стен обмуровки. Для создания циркуляционного контура в экранах передний конец каждого экранного коллектора соединен опускной необогреваемой трубой с верхним барабаном, а задний конец - перепускной трубой с нижним барабаном.

Вода поступает в боковые экраны одновременно из верхнего барабана по передним опускным трубам, а из нижнего барабана по перепускным. Такая схема питания боковых экранов повышает надежность работы при пониженном уровне воды в верхнем барабане, увеличивает кратность циркуляции.

Экранные трубы паровых котлов ДКВР изготовляют из стали 51´2.5 мм.

В котлах с длинным верхним барабаном экранные трубы приварены к экранным коллекторам, а в верхний барабан ввальцованы.

Шаг боковых экранов у всех котлов ДКВР 80 мм, шаг задних и фронтовых экранов - 80 ¸130 мм.

Пучки кипятильных труб выполнены из стальных бесшовных гнутых труб диаметром 51´2.5 мм.

Концы кипятильных труб паровых котлов типа ДКВР прикреплены к нижнему и верхнему барабану с помощью вальцовки.

Циркуляция в кипятильных трубах происходит за счет бурного испарения воды в передних рядах труб, т.к. они расположены ближе к топке и омываются более горячими газами, чем задние, вследствие чего в задних трубах, расположенных на выходе газов из котла вода идет не вверх, а вниз.

Топочная камера в целях предупреждения затягивания пламени в конвективный пучок и уменьшения потери с уносом (Q 4 - от механической неполноты сгорания топлива), разделена перегородкой на две части: топку и камеру сгорания. Перегородки котла выполнены таким образом, что дымовые газы омывают трубы поперечным током, что способствует теплоотдаче в конвективном пучке.

Технологические параметры.

Таблица 1

Параметр

Производительность

Температура перегретого пара

Давление в барабане котла

Температура питательной воды после экономайзера

Температура отходящих газов

Давление газа перед горелками

Разрежение в топке

мм.вод.ст.

Уровень в барабане относительно его оси


2. АВТОМАТИЗАЦИЯ РАБОТЫ ПАРОВОГО КОТЛА

Обоснование необходимости контроля, регулирования и сигнализации технологических параметров.


Регулирование питания котельных агрегатов и регулирование давления в барабане котла главным образом сводится к поддержанию материального баланса между отводом пара и подачей воды. Параметром характеризующим баланс, является уровень воды в барабане котла. Надежность работы котельного агрегата во многом определяется качеством регулирования уровня. При повышении давления, снижение уровня ниже допустимых пределов, может привести л нарушению циркуляции в экранных трубах, в результате чего произойдет повышение температуры стенок обогреваемых труб и их пережег.

Повышение уровня также ведет к аварийным последствиям, так как возможен заброс воды в пароперегреватель, что вызовет выход его из строя. В связи с этим, к точности поддержания заданного уровня предъявляются очень высокие требования. Качество регулирования питания также определяется равенством подачи питательной воды. Необходимо обеспечить равномерное питание котла водой, так как частые и глубокие изменения расхода питательной воды могут вызвать значительные температурные напряжения в металле экономайзера.

Барабанам котла с естественной циркуляцией присуща значительная аккумулирующая способность, которая проявляется в переходных режимах. Если в стационарном режиме положение уровня воды в барабане котла определяется состоянием материального баланса, то в переходных режимах на положение уровня влияет большое количество возмущений. Основными из них являются.изменение расхода питательной воды, изменение паросъема котла при изменении нагрузки потребителя, изменение паропроизводительности при изменении при изменении нагрузки топки, изменение температуры питательной воды.

Регулирование соотношения газ-воздух необходимо как чисто физически, так и экономически. Известно, что одним из важнейших процессов, происходящих в котельной установке, является процесс горения топлива. Химическая сторона горения топлива представляет собой реакцию окисления горючих элементов молекулами кислорода. Для горения используется кислород, находящийся в атмосфере. Воздух в топку подается в определенном соотношении с газом посредством дутьевого вентилятора. Соотношение газ-воздух примерно составляет 1.10. При недостатке воздуха в топочной камере происходит неполное сгорание топлива. Не сгоревший газ будет выбрасываться в атмосферу, что экономически и экологически не допустимо. При избытке воздуха в топочной камере будет происходить охлаждение топки, хотя газ будет сгорать полностью, но в этом случае остатки воздуха будут образовывать двуокись азота, что экологически недопустимо, так как это соединение вредно для человека и окружающей среды.

Система автоматического регулирования разряжения в топке котла сделана для поддержания топки под наддувом, то есть чтобы поддерживать постоянство разряжения(примерно 4мм.вод.ст.). При отсутствии разряжения пламя факела будет прижиматься, что приведет к обгоранию горелок и нижней части топки. Дымовые газы при этом пойдут в помещение цеха, что делает невозможным работу обслуживающего персонала.

В питательной воде растворены соли, допустимое количество которых определяется нормами. В процессе парообразования эти соли остаются в котловой воде и постепенно накапливаются. Некоторые соли образуют шлам – твердое вещество, кристаллизующееся в котловой воде. Более тяжелая часть шлама скапливается в нижних частях барабана и коллекторов.

Повышение концентрации солей в котловой воде выше допустимых величин может привести к уносу их в пароперегреватель. Поэтому соли, скопившиеся в котловой воде, удаляются непрерывной продувкой, которая в данном случае автоматически не регулируется. Расчетное значение продувки парогенераторов при установившемся режиме определяется из уравнений баланса примесей к воде в парогенераторе. Таким образом, доля продувки зависит от отношения концентрации примесей в воде продувочной и питательной. Чем лучше качество питательной воды и выше допустимая концентрация примесей в воде, тем доля продувки меньше. А концентрация примесей в свою очередь зависит от доли добавочной воды, в которую входит, в частности, доля теряемой продувочной воды.

Сигнализация параметров и защиты, действующие на останов котла, физически необходимы, так как оператор или машинист котла не в силах уследить за всеми параметрами функционирующего котла. Вследствие этого может возникнуть аварийная ситуация. Например при упуске воды из барабана, уровень воды в нем понижается, вследствие этого может быть нарушена циркуляция и вызван пережег труб донных экранов. Сработавшая без промедления защита, предотвратит выход из строя парогенератора. При уменьшении нагрузки парогенератора, интенсивность горения в топке снижается. Горение становится неустойчивым и может прекратиться. В связи с этим предусматривается защита по погашению факела.

Надежность защиты в значительной мере определяется количеством,схемой включения и надежностью используемых в ней приборов. По своему действию защиты подразделяются на действующие на останов парогенератора; снижение нагрузки парогенератора; выполняющие локальные операции.

Согласно вышеперечисленного автоматизация работы парового котла должна осуществляться по следующим параметрам: по поддержанию постоянного давления пара;

по поддержанию постоянного уровня воды в котле;

по поддержанию соотношения "газ - воздух";

по поддержанию разрежения в топочной камере.


3. ВЫБОР АВТОМАТИЧЕСКОЙ СИСТЕМЫ УПРАВЛЕНИЯ.

3.1.Для автоматизации работы котла выбираем программируемый контроллер семейства МИКРОКОНТ-Р2.

Программируемые контроллеры МИКРОКОНТ-Р2 имеют модульную конструкцию, что позволяет произвольно наращивать число входов-выходов в каждой точке управления и сбора информации.

Высокая вычислительная мощность процессора и развитые сетевые средства позволяют создавать иерархические АСУ ТП любой сложности.


3.2.Конструктивное исполнение микроконтроллера МИКРОКОНТ.

Данный микроконтроллер имеет модульную конструкцию (рис. 4)

Все элементы (модули) семейства выполнены в закрытых корпусах единого исполнения и ориентированы на установку в шкафах.

Присоединение модулей ввода/вывода (EXP) к модулю вычислителя (СРU) выполняется с помощью гибкой шины расширения (плоский кабель) без использования шасси ограничивающего возможности расширения и снижающего гибкость при компоновке

В состав данного микроконтроллера входят следующие модули:

Модуль процессора.


CPU-320DS центральный процессор, RAM-96 K, EPROM-32 K, FLASH32 K, SEEPROM 512.

Модули ввода-вывода

Bi/o16 DC24 дискретный ввод/вывод,16/16 =24 В,I вх =10 мА,I вых =0,2 А;

Bi 32 DC24 дискретный ввод, 32 сигнала =24 В, 10 мA;

Bi16 AC220 дискретный ввод, 16 сигналов ~220 В, 10 мА;

Bo32 DC24 дискретный вывод, 32 сигналов =24 В, 0,2 А;

Bo16 ADC дискретный вывод, 16 сигналов ~220 В, 2,5 А;

MPX64 коммутатор дискретных входов, 64 входа, =24 В, 10 мА;

Ai-TC 16 аналоговых входов от термопар;

Ai-NOR/RTD-1 20 аналоговых входов i или U;

Ai-NOR/RTD-2 16 входов i или U, 2 термопреобразователей сопротивления;

Ai-NOR/RTD-3 12 входов i или U, 4 термопреобразователей сопротивления;

Ai-NOR/RTD-4 8 входов i или U, 6 термопреобразователей сопротивления;

Ai-NOR/RTD-5 4 входа i или U, 8 термопреобразователей сопротивления;

Ai-NOR/RTD-6 10 термопреобразователей сопротивления;

PO-16 пульт (дисплей - 16 букв, 24 клавиши).

Модули ввода - вывода имеют разъемы ввода-вывода с зажимами под винт, совмещающие функции разъемов и клеммных соединений, которые упрощают объем оборудования в шкафу и обеспечивают быстрое подключение/ отключение внешних цепей.

Пульт оператора

РО-04 - пульт для установки на щит. ЖКИ - индикатор (2 строки по 20 знаков), встроенная клавиатура (18 клавиш), возможность подключения 6-ти внешних клавиш, интерфейс RS232/485, питание = нестабилизированное 8¸15 В;

РО-01 - портативный пульт. ЖКИ - индикатор (2 строки по 16 знаков), клавиатура, интерфейс RS232/485, питание: а) = 8¸15 В; б) батарея.


Для подготовки и отладки прикладных программ автоматизации технологического оборудования предусматривается применение персонального компьютера (типа IBM PC), подключаемого к каналу информационной сети через адаптер AD232/485.

Подготовка прикладных программ осуществляется на одном из двух языков:

РКС (язык технологического программирования, оперирующий типовыми элемен-тами релейно-контактной логики и автоуправления;

АССЕМБЛЕР.

Допускается компоновка программы из модулей, написанных на любом из указанных языков. При отладке прикладных программ модуля сохраняется штатный режим работы прикладных программ остальных модулей и обмена по каналу локальной сети.


3.3. Назначение и технические характеристики основных модулей микроконтроллера.

Модуль процессора CPU-320DS.

Модуль процессора CPU-320DS предназначен для организации интеллектуальных систем управления и функционирует как автономно, так и в составе локальной информационной сети.

Связь с объектами управления осуществляется через модули ввода/вывода, подключаемые к CPU посредством шины расширения.

Модуль CPU-320DS может быть подключен к двум локальным сетям BITNET (ведомый-ведущий; моноканал; витая пара; RS485; 255 абонентов) и выполнять функции как ведущего так и ведомого в обеих сетях.

Модуль CPU-320DS может выполнять функции активного ретранслятора между двумя сегментами локальной сети (до 32 х абонентов в каждом сегменте).

Модуль CPU-320DS включает в себя источник питания использующийся как для питания внутренних элементов так и для питания модулей ввода/вывода (до 10-и модулей ввода/вывода).

БИС процессора - DS80C320;

Время цикла команды “Регистр-регистр” - 181 нс;

Тактовая частота генератора - 22.1184 МГц;

Энергонезависимое ОЗУ - 96 К;

Системное ППЗУ - 32 К;

ЭППЗУ пользователя с электрической

перезаписью (FLASH) - 32 К;

· ЭППЗУ системных параметров - 512 байт;

· Погрешность часов реального времени - не более ± 5 с в сутки;

Время сохранения данных в энергонезависимом

ОЗУ и работы часов реального времени при

отключенном питании модуля - 5 лет;

· Последовательные интерфейсы COM 1 - RS485 с гальванической развязкой или RS232;

COM 2 - RS485 с гальванической развязкой или RS232;

· Время цикла обращения к внешним устр-вам

по шине расширения - 1266 нс;

· Скорость обмена данными в информа-

ционной сети (кБод) - 1,2 ¸ 115,2;

· Длины кабеля связи соответственно (км) - 24 ¸ 0,75;

· Кабель информационной сети - экранированная витая пара.

· Напряжение питания - ~220 В (+10 %, -30 %);

· Максимальная потребляемая мощность

встроенного блока питания при подклю-

ченных модулях ввода/вывода (Вт) - не более 20 Вт;

встроенного блока питания: по +5 В - 2,0 A

· Собственное потребление модуля CPU-320DS по питанию + 5 В - не более 200 мA

· Наработка на отказ - 100000 час

· Температура окружающей среды: для CPU-320DS - от 0 ° С до +60 °С

· Относительная влажность окружающей среды - не более 80 % при t=35 °С Степень защиты от воздействия окружающей среды - IP-20


Подключение модулей ввода/вывода (EXP)

Подключение модулей ввода/вывода к модулю CPU-320DS выполняется с помощью гибкой шины расширения см.рис.5.1.1.(плоский кабель, 34 жилы).

Модули ввода/вывода могут располагаться как слева, так и справа от процессора.

Максимальная длина кабеля шины расширения - 2500 мм.

Максимальное количество подключаемых модулей ввода/вывода - 16. При подключении к шине более 10 модулей ввода/вывода рекомендуется располагать их поровну с разных сторон от CPU (см.рис.4)




Модуль ввода аналогового сигнала.

Модуль аналогового ввода Ai-NOR/RTD предназначен для автоматического сканирования и преобразования сигналов от датчиков с нормированным токовым выходом, и от термопреобразователей сопротивления в цифровые данные с последующей записью их в двухпортовую память, доступную для модуля CPU по шине расширения.

Полное обозначение модуля аналогового ввода Ai-NOR/RTD-XXX-X:

Первые две буквы обозначают тип модуля: Ai - аналоговый ввод.

Следующие буквы - тип входного сигнала: NOR - нормированный аналоговый сигнал, RTD - термопреобразователь сопротивления).

Следующие три цифры определяют:

первая цифра - число и соотношение аналоговых входов. Предусмотрено шесть вариантов соотношения нормированных входов и входов от термопреобразователей сопротивления.

Ai-NOR/RTD-1X0 -20 нормированных входов, RDT входов – нет;

Ai-NOR/RTD-2XX - 16 нормированных входов, 2 входа RTD;

Ai-NOR/RTD-3XX - 12 нормированных входов, 4 входа RTD;

Ai-NOR/RTD-4XX - 8 нормированных входов, 6 входов RTD;Ai-NOR/RTD-5XX - 4 нормированных входа, 8 входов RTD;

Ai-NOR/RTD-60X - отсутствуют нормированные входы, 10 входов RTD.

Вторая цифра - диапазон нормированного токового или потенциаль-ного входного сигнала. Предусмотрено семь вариантов нормированных сигналов.

Ai-NOR/RTD-X1X -диапазон входного сигнала -10 В¸10 В;

Ai-NOR/RTD-X2X -диапазон входного сигнала 0 В¸10 В;

Ai-NOR/RTD-X3X -диапазон входного сигнала -1 В¸1 В;

Ai-NOR/RTD-X4X -диапазон входного сигнала -100 мB¸100 мВ;

Ai-NOR/RTD-X5X -диапазон входного сигнала 0¸5 мA;

Ai-NOR/RTD-X6X -диапазон входного сигнала 0¸20 мA;

Ai-NOR/RTD-X7X -диапазон входного сигнала 4¸20 мA.

Третья цифра - тип термопреобразователя сопротивления. Предусмот-рено подключение пяти типов термопреобразователей сопротивления.

Ai-NOR/RTD-XX1 - термопреобразователь сопротивления - медный типа ТСМ-50М, значение W 100 =1,428;

Ai-NOR/RTD-XX2 - термопреобразователь сопротивления - медный типа ТСМ-100М, значение W 100 =1,428;

Ai-NOR/RTD-XX3 - термопреобразователь сопротивления - платиновый типа ТСП-46П, значение W 100 =1,391;

Ai-NOR/RTD-XX4 - термопреобразователь сопротивления - платиновый типа ТСП-50П, значение W 100 =1,391;

Ai-NOR/RTD-XX5 - термопреобразователь сопротивления - платиновый типа ТСП-100П, значение W 100 =1,391.

Диапазон температур и электрических сопротивлений термо-преобразователей приведены в табл.2.

Замыкающая шифр буква - тип клеммного соединения (подключение кабеля): R - подключение справа, L - подключение слева, F - подключение с фронта.

Таблица 2.

Тип термопреобразо-вателя сопротивления

Диапазон температур,

Электрическое сопротивление, Ом

78,48 ¸ 177,026

39,991 ¸133,353

79,983 ¸266,707

Подключение к модулю CPU.

Подключение к модулю CPU выполняется при помощи гибкой шины расширения.

Максимальная длина шины расширения зависит от типа применяемого модуля CPU и указывается в его техническом описании. Распределение сигналов шины распределения по контактам и их назначение приведено в техническом описании на модуль CPU.

Максимальное количество модулей аналогового ввода, подключаемых к одному CPU определяется их потреблением от источника питания, встроенного в CPU, но не должно превышать 8.

Для адресации аналогового модуля в адресном пространстве модуля CPU, на задней панели аналогового модуля имеется переключатель адреса. На каждом аналоговом модуле, подключенном к шине расширения модуля CPU должен быть установлен индивидуальный адрес переключателем. Разрешенная область установки адресов от 0 до 7 (по положению переключателя).

Описание работы модуля.

Модуль ввода аналоговых сигналов Ai-NOR/RTD производит преобразование нормированных токовых сигналов и сигналов термосопротивлений в цифровые данные.

Преобразование входных аналоговых сигналов производится путем автоматического последовательного сканирования (подключения) входных цепей к входу общего нормирующего усилителя. Усиленный нормирующим усилителем входной сигнал (0¸10)В подается на высокостабильный преобразователь “аналог – частота”, время преобразования которого составляет 20 мс или 40 мс и устанавливается программно.

Преобразователь “аналог – частота” линейно преобразует входное напряжение (0¸10)В в частоту (0¸250) кГц.

Выработанное преобразователем количество импульсов за установленное время записывается в счетчик импульсов, входящий в состав однокристальной ЭВМ аналогового модуля. Таким образом, зафиксированное в счетчике цифровое значение является необработанным цифровым значением аналогового входного сигнала.

Однокристальная ЭВМ модуля производит обработку полученных цифровых значений:

Линеаризацию,

Компенсацию температурного дрейфа,

Смещения (если необходимо),

Проверку аналоговых датчиков на обрыв.

Необходимые данные для реализации вышеперечисленных функций хранятся в электрически перезаписываемом ПЗУ модуля.

Обрабатываемые цифровые значения аналоговых сигналов помещаются в двухпортовую память, доступную для модуля CPU по шине расширения.

Обмен по шине расширения с модулем CPU обеспечивается через двухпортовые ОЗУ по принципу “команда – ответ”. Модуль CPU записывает в двухпортовое ОЗУ аналогового модуля код команды передачи аналоговых данных и номер канала аналогового ввода.

Однокристальная ЭВМ аналогового модуля считывает из двухпортового ОЗУ полученную команду, и, при условии полной обработки запрошенного сигнала, помещает в двухпортовое ОЗУ код ответа.

При получении кода ответа модуль CPU переписывает обработанное цифровое значение запрошенного аналогового канала в свой буфер и переходит к запросу и вводу следующего канала.

После ввода последнего аналогового канала модуль CPU запрашивает “статусный” регистр аналогового модуля, в котором отображаются состояния внутренних устройств модуля, а также исправность аналоговых датчиков, и только после этого переходит ко вводу первого аналогового канала. “Статусный” регистр сохраняется в памяти модуля CPU. Кроме того, в памяти CPU хранится содержимое EEPROM аналогового модуля, которое переписывается однократно, при включении питания, а также регистр “управления”, включающий ввод аналоговых данных. Все данные, относящиеся к аналоговому модулю доступны для считывания программным обеспечением верхнего уровня, например, программой “Справочник”


Модуль дискретного ввода – вывода.

Модуль дискретного ввода/вывода предназначен для преобразования дискретных входных сигналов постоянного тока от внешних устройств в цифровые данные и передачу их по шине расширения в процессорный модуль (CPU), а также для преобразования цифровых данных, поступающих от процессорного модуля, в бинарные сигналы, их усиления и вывод на выходные разъемы для управления подключенным к ним устройствам.

Все входы и выходы гальванически развязаны с внешними устройствами.


Основные технические характеристики.

Число входов - 16

Число выходов - 16

Тип гальванической развязки:

По входам - групповая; один общий провод на каждые четыре входа

И выходам - один общий провод на каждые восемь входов

Параметры входов:

питание входных цепей - внешний источник (24¸36)В,

Уровень логической единицы - >15В

Уровень логического нуля -