Ионизационные детекторы излучения счетчик гейгера мюллера. Счетчик гейгера - это просто

С помощью современного счетчика Гейгера можно измерить уровень радиации строительных материалов, земельного участка или квартиры, а также продуктов питания. Он демонстрирует практически стопроцентную вероятность заряженной частицы, ведь для ее фиксирования достаточно всего одной пары электрон-ион.

Технология, на основе которой создан современный дозиметр на базе счетчика Гейгера-Мюллера, позволяет получать результаты высокой точности за очень короткий промежуток времени. На измерение требуется не больше 60 секунд, а вся информация выводится в графическом и числовом виде на экране дозиметра.

Настройка прибора

У прибора есть возможность настройки порогового значения, когда он превышен, издается звуковой сигнал, предупреждающий вас об опасности. Выберите одно из заданных значений порога в соответствующем разделе настроек. Звуковой сигнал также можно отключить. Перед проведением измерений рекомендуют провести индивидуальную настройку прибора, выбрать яркость дисплея, параметры звукового сигнала и элементов питания.

Порядок выполнения измерений

Выберите режим «Измерение», при этом прибор начинает оценку радиоактивной обстановки. Примерно через 60 секунд на его дисплее появляется результат измерений, после чего начинается следующий цикл анализа. Для того чтобы получить точный результат, рекомендуют провести не менее 5 циклов измерений. Увеличение числа наблюдений дает более достоверные показания.

Чтобы измерить радиационный фон предметов, например стройматериалов или пищевых продуктов, нужно включить режим «Измерение» на расстоянии нескольких метров от объекта, затем поднести прибор к предмету и измерить фон максимально близко к нему. Сравните показания прибора с данными, полученными на расстоянии нескольких метров от предмета. Разница между этими показаниями - это дополнительный радиационный фон исследуемого объекта.

Если результаты измерений превышают естественный фон, характерный для той местности, в которой вы находитесь, это свидетельствует о радиационном загрязнении исследуемого объекта. Для оценки загрязнения жидкости рекомендуют проводить измерения над ее открытой поверхностью. Чтобы защитить прибор от влаги, его нужно обернуть полиэтиленовой пленкой, но не более чем в один слой. Если дозиметр длительное время находился при температуре ниже 0оС, перед проведением измерений его необходимо выдержать при комнатной температуре в течение 2 часов.

Давно не проблема купить прибор под условным названием «бытовой дозиметр» (были б деньги - в этом смысле, Фукусима радиофобам и радиофилам (TM) подгадила), но думаю, что этот прибор было бы интересно сделать своими руками.

Сердцем нашего прибора будет счетчик Гейгера. Мы знаем, конечно, что у этого детектора есть куча недостатков и вообще «прибор должен быть сцинтилляционным», но сцинтилляционный радиометр существенно сложнее и у меня под него задуман следующий пост. Тем более, у счетчика Гейгера-Мюллера есть и ряд неоспоримых достоинств.

Итак, начнем.

Детектор

Итак, счетчик Гейгера-Мюллера. (рис.1) Простейшее устройство, состоящее из двух электродов, помещенных в газовую среду при низком давлении - катод, имеющий большую площадь, и анод в виде более-менее тонкой проволоки, создающий локальное поле большой напряженности. в котором развивается процесс размножения ионов, за счет которого единственная ионная пара может вызвать мощную лавину ионизации и зажигание самостоятельного разряда.


Рис. 1. Счетчик Гейгера-Мюллера. 1 - анод, 2 - катод, 3 - баллон, 4 - вывод катода, 5, 6 - пружины, натягивающие нить катода.

По сути счетчик работает, как тиратрон с холодным катодом, только разряд в нем зажигается от ионизации, вызванной не импульсом с сетки, а пролетевшей через газ заряженной частицей. После того, как разряд загорелся, его нужно погасить либо снятием с анода напряжения, либо… Либо он погаснет сам. Но для этого в газовую среду счетчика надо ввести что-то, что под действием разряда перейдет в форму, которая сделает газ непрозрачным для ультрафиолетового излучения и из-за этого исчезнет один из факторов поддержания самостоятельного разряда - фотоэлектронная эмиссия. Таких добавок две: спирт и галогены (хлор, бром и йод). Первый в разряде разлагается, превращаясь, грубо говоря, в сажу, и потом обратно в спирт не превращается, и через несколько десятков тысяч импульсов кончится и счетчику конец. А галогены становятся из молекулярных атомарными, причем процесс обратим. Они тоже кончаются - из-за того, что атомарные галогены с легкостью реагируют со всем попало, включая стенки счетчика, но чаще они успевают рекомбинировать друг с другом, поэтому галогенные счетчики гораздо более долговечны, выдерживая миллиарды импульсов. Нас интересуют в первую очередь галогенные счетчики, потому что:

А) они долговечнее,
б) они работают при 400-500 В, а не при полутора тысячах, как спиртовые,
в) они просто наиболее распространены.
В таблице 1 я привел несколько распространенных счетчиков Гейгера и их основные параметры.

Таблица 1.
Основные параметры некоторых счетчиков Гейгера-Мюллера.


Примечания: 1 - чувствительность к альфа-излучению не регламентирована; 2 - мелкосерийный счетчик, данные по нему скудны.

Чувствительность

Выбирая счетчик Гейгера для нашего дозиметра, нужно в первую очередь смотреть на его чувствительность. Ведь вряд ли вы хотите прибор, который что-то покажет только там, где пару часов назад взорвалась «Кузькина мать». А таких счетчиков, между тем, предостаточно, и за их почти полной бесполезностью для обывателя, они очень дешево стоят. Это всевозможные СИ-3БГ, СИ-13Г и прочие «счетчики судного дня», стоящие в армейских дозиметрах для работы на верхнем пределе измерений. Чем счетчик чувствительнее, тем больше импульсов в секунду он при одном и том же уровне радиации даст. Классический счетчик СБМ-20 (он же более ранних выпусков носил название СТС-5), который традиционно ставили во все перестроечно-постчернобыльские «трещалки», при естественном фоне в 12 мкР/ч дает около 18 импульсов в минуту. От этой цифры удобно плясать, считая чувствительность счетчика в «СБМ-20».

Что нам дает чувствительность счетчика? Точность и скорость реакции. Дело в том, что частицы радиоактивных излучений прилетают к нам не по расписанию, а как придется, да и счетчик какую-то из них пропустит, а от какой-то сработает (от фотонов гамма-излучения - примерно от одного из нескольких сотен). Так что импульсы от счетчика Гейгера (да и от любого счетного детектора радиации) идут в абсолютно случайные моменты времени с непредсказуемыми интервалами между ними. И посчитав количество импульсов в одну минуту, другую, третью - мы получим различные значения. И среднеквадратичное отклонение этих значений, то есть погрешность определения скорости счета, будет пропорционален квадратному корню из числа зарегистрированных импульсов. Чем больше будет импульсов, тем меньше будет относительная (в процентах от измеряемой величины) погрешность их счета: .
Когда у нас детектор - упомянутый «эталонный» СБМ-20, а время счета - 40 секунд (так делали в простых бытовых дозиметрах, непосредственно показывая число сосчитанных импульсов в качестве уровня мощности дозы в мкР/ч), на естественном фоне количество импульсов - ~10 штук. А это значит, что среднеквадратическое отклонение - около трех. А погрешность при 95% доверительной вероятности - вдвое больше, то есть 6 импульсов. Таким образом, мы имеем грустную картинку: показания дозиметра 10 мкР/ч означают, что мощность дозы составляет где-то от 4 до 16 мкР/ч. А об обнаружении аномалии мы сможем говорить только когда дозиметр покажет отклонение в три сигмы, то есть больше 20 мкР/ч…

Чтобы точность увеличить, можно увеличить время счета. Если мы сделаем его три минуты, то есть в четыре раза больше, мы учетверим и число импульсов, а значит, удвоим точность. Но тогда мы потеряем реакцию прибора на короткие всплески излучения, например, на прошедшего мимо вас «вашего сиятельства» после сцинтиграфии или радиойодтерапии или наоборот, когда вы проходите на радиобазаре мимо часов с СПД. А взяв вчетверо более чувствительный детектор (4 параллельно соединенных СБМ-20, один СБМ-19, СБТ-10 или СИ-8Б) и оставив то же время измерения, мы и точность повысим, и скорость реакции сохраним.

Альфа, бета, гамма и конструкция счетчиков

Альфа-излучение задерживается бумажкой. Бета-излучение можно экранировать листом оргстекла. А от жесткого гамма-излучения нужно строить стену из свинцовых кирпичей. Это знают, пожалуй, все. И все это имеет прямое отношение к счетчикам Гейгера: чтобы он почувствовал излучение, нужно, чтобы оно, как минимум, проникло внутрь. А еще оно должно не пролететь навылет, как нейтрино сквозь Землю.

Счетчик типа СБМ-20 (и его старший брат СБМ-19 и младшие СБМ-10 и СБМ-21) имеют металлический корпус, в котором нет никаких специальных входных окон. Из этого вытекает, что ни о какой чувствительности к альфа-излучению речи не идет. Бета-лучи он чувствует достаточно неплохо, но только если они достаточно жесткие, чтобы проникнуть внутрь. Это где-то от 300 кэВ. А вот гамма-излучение он чувствует, начиная с пары десятков кэВ.

А счетчики СБТ-10 и СИ-8Б (а также новомодные и малодоступные из-за ломовых цен Бета-1,2 и 5) вместо сплошной стальной оболочки имеют обширное окно из тонкой слюды. Через это окно способны проникнуть бета-частицы с энергией свыше 100-150 кэВ, что позволяет увидеть загрязнение углеродом-14, которое абсолютно невидимо для стальных счетчиков. Также окно из слюды позволяет счетчику чувствовать альфа-частицы. Правда, в отношении последних надо смотреть на толщину слюды конкретных счетчиков. Так, СБТ-10 с его толстой слюдой его практически не видит, а у Беты-1 и 2 слюда тоньше, что дает эффективность регистрации альфа-частиц плутония-239 около 20%. СИ-8Б - где-то посередине между ними.

А вот теперь что касается пролета насквозь. Дело в том, что альфа- и бета-частицы счетчик Гейгера регистрирует практически все, что смогли проникнуть внутрь. А вот с гамма-квантами все печально. Чтобы гамма-квант вызвал импульс в счетчике, он должен выбить из его стенки электрон. Этот электрон должен преодолеть толщу металла от точки, где произошло взаимодействие, до внутренней поверхности, и поэтому «рабочий объем» детектора, где происходит его взаимодействие с фотонами гамма-излучения - это тончайший, в несколько микрон, слой металла. Отсюда ясно, что эффективность счетчика для гамма-излучения очень мала - в сто и более раз меньше, чем для бета-излучения.

Питание

Для работы счетчик Гейгера требует высоковольтного питания. Типичные галогенные приборы советского-российского производства требуют напряжения около 400 В, многие западные счетчики рассчитаны на 500 или 900 В. Некоторые счетчики требуют напряжения до полутора киловольт - это старые счетчики со спиртовым гашением типа МС и ВС, счетчики рентгеновского излучения для рентгеноструктурного анализа, нейтронные. Нас они не будут сильно интересовать. Питание на счетчик подается через балластное сопротивление в несколько мегаом - оно ограничивает импульс тока и снижает напряжение на счетчике после прохождения импульса, облегчая гашение. Величина этого сопротивления приводится в справочных данных на конкретный прибор - его слишком малая величина сокращает жизнь детектора, а слишком большая - увеличивает мертвое время. Обычно его можно взять около 5 МОм.

При увеличении напряжения от нуля счетчик Гейгера сначала работает, как обыкновенная ионизационная камера, а затем, как пропорциональный счетчик: каждая из пар ионов, которые образовались при пролете частицы, порождает небольшую ионов, увеличивая ионный ток в сотни и тысячи раз. При этом на нагрузочном сопротивлении в цепи счетчика уже можно обнаружить очень слабые, измеряемые милливольтами, импульсы. С ростом напряжения лавины становятся все больше, и в какой-то момент самые сильные из них начинают поддерживать сами себя, зажигая самостоятельный разряд. В этот момент вместо слабых, милливольтовых импульсов от лавин, проходящих через межэлектродное пространство и исчезающих на электродах, появляются гигантские, амплитудой в несколько десятков вольт! И их частота с ростом напряжения быстро растет, пока вспышку разряда не начнет вызывать каждая лавина Очевидно, что при дальнейшем росте напряжения скорость счета должна перестать расти. Так оно и происходит: на зависимости чувствительности от напряжения наблюдается плато .

Все же рост напряжения не оставляет скорость счета неизменной: разряд может возникнуть и просто так, от спонтанной эмиссии. И с ростом напряжения вероятность такого разряда только увеличивается. Поэтому плато получается наклонным, а начиная с некоторого напряжения скорость счета начинает быстро расти, а затем разряд переходит в непрерывный. В таком режиме, понятное дело, счетчик не только не выполняет своей функции, но и быстро выходит из строя.


Рис. 2. Зависимость скорости счета счетчика Гейгера от напряжения питания.

Наличие плато существенно облегчает питание счетчика Гейгера - ему не требуются высокостабильные источники высокого напряжения, какие требуются для сцинтилляционных счетчиков. Длина этого плато для низковольтных счетчиков - 80-100 В. Во многих советских бытовых дозиметрах кооперативного происхождения и практически во всех любительских конструкциях того времени питание счетчика было сделано от преобразователя напряжения на основе блокинг-генератора без всякого намека на стабилизацию. Расчет был таким: при свежей батарейке напряжение на аноде счетчика соответствовало верхней границе плато, так что нижней границы плато высокое напряжение достигало уже при изрядно разряженной батарейке.

Фон и мертвое время

Любой детектор любого излучения всегда имеет некоторый темновой сигнал, регистрируемый, когда на детектор не падает никакое излучение. Счетчик Гейгера-Мюллера - не исключение. Одним из источников темнового фона является упоминавшаяся выше спонтанная эмиссия. Вторым - радиоактивность самого счетчика, что особенно актуально для счетчиков со слюдяным окном, так как природная слюда неизбежно содержит примеси урана и тория. И если последняя практически не зависит ни от чего и является константой для данного экземпляра детектора, то фон от спонтанной эмиссии зависит от величины высокого напряжения, температуры, «возраста» счетчика. Из-за этого становится плохой идеей питать нестабилизированным напряжением счетчик, которым мы будем пользоваться в основном при измерениях низких уровней радиации: собственный фон счетчика от напряжения питания зависит весьма существенно.

Скорость счета от собственного фона достигает у счетчиков Гейгера уровня, соответствующего 3-10 мкР/ч, то есть составляет заметную долю скорости счета при нормальной радиационной обстановке. Особенно велик фон у слюдяных датчиков - СБТ-10, СИ-8Б, «Бета». Так что его обязательно нужно вычитать из результатов измерения. Но для этого его нужно знать. Справочник тут не поможет: там приведены лишь максимальные значения. Чтобы собственный фон измерить, нужен свинцовый «домик» толщиной не менее 5 см, при этом внутреннюю поверхность нужно покрыть листами меди толщиной 2-3 мм и 5 мм оргстеклом. Дело в том, что «домик» будет находиться под обстрелом космических лучей, которые делают сам домик источником рентгеновского излучения, главным образом в характеристических линиях свинца. И если сделать защиту только из свинца, это флюоресцентное «свечение» и «увидит» счетчик - вместо полной «темноты». А оргстекло нужно от выбиваемых той же космикой из свинца и меди электронов, энергия которых тоже достаточна для обнаружения счетчиком Гейгера.

При измерении фона следует учитывать, что свинцовый «домик» не оказывает никакого препятствия для космических мюонов. Их поток составляет ~0,015 . Например, через счетчик СБМ-20 эффективной площадью ~8 пройдет 0,12 или 7,2 . Из-за большой энергии эффективность регистрации космических мюонов практически любым счетчиком Гейгера можно принимать за 100%, и эту величину следует вычесть из темнового фона.

Если собственный фон - источник погрешностей при низких уровнях, то мертвое время сказывается при больших уровнях радиации. Сущность явления состоит в том, что сразу после импульса емкость счетчика еще не зарядилась до первоначального напряжения через нагрузочное сопротивление. Кроме того, в счетчике только погас разряд - но гасящая присадка еще не успела вернуться в первоначальное состояние. Поэтому у счетчика на 150-200 мкс возникает состояние, когда он оказывается нечувствителен к следующей частице, после чего он постепенно восстанавливает чувствительность. (рис. 3)


Рис. 3. Мертвое время счетчика Гейгера

Поправка на мертвое время находится по формуле:

где m и n, соответственно, измеренная и скорректированная скорости счета, а - мертвое время.

При очень больших уровнях радиации у многих счетчиков Гейгера (тут еще зависит и от остальной схемы) наступает неприятный и опасный эффект: постоянная ионизация мешает формироваться отдельным импульсам. Счетчик начинает непрерывно «гореть» постоянным разрядом и скорость счета резко падает до очень малой величины. Вместо того, чтобы зашкалить, дозиметр показывает какие-то умеренно-повышенные, а то и почти нормальные цифры. А тем временем вокруг светят десятки и сотни рентген в час и надо бы бежать, но вы успокоены показаниями дозиметра. Именно поэтому в армейских дозиметрах почти всегда есть помимо основного чувствительного - счетчик «судного дня», очень малочувствительный, но зато способный переварить тысячи Р/ч.

От скорости счета к дозе. Ход с жесткостью и прочие нехорошие вещи

Вообще говоря, счетчик Гейгера не измеряет мощность дозы. Мы получаем лишь скорость счета - сколько импульсов в минуту или секунду выдал счетчик. К дозе - энергии, поглощенной в одном килограмме человеческого тела (или еще чего-либо) это имеет весьма отдаленное отношение. В первую очередь - в связи с принципом действия: счетчику Гейгера абсолютно плевать на природу частицы и ее энергию. Импульсы от фотонов любой энергии, бета-частиц, мюонов, позитронов, протонов - будут одинаковыми. А вот эффективность регистрации - разная.

Как уже я говорил, бета-излучение счетчик Гейгера регистрирует с эффективностью в десятки процентов. А гамма-гамма-кванты - только доли процента. И все это напоминает складывание метров с килограммами, да еще и с произвольно взятыми коэффициентами. Вдобавок, чувствительность счетчика к гамма-излучению неодинакова при разных энергиях (рис.4). Дозовая чувствительность к излучению разных энергий может отличаться почти на порядок. Природа этого явления понятна: гамма-излучение низкой энергии имеет гораздо больший шанс поглотиться тонким слоем вещества, поэтому чем энергия ниже, тем выше эффективность (пока не начнет сказываться поглощение в стенках счетчика). В области же высоких энергий наоборот: с ростом энергии эффективность регистрации растет, что является среди детекторов ионизирующего излучения достаточно необычным явлением.


Рис. 4. Энергетическая зависимость дозовой чувствительности счетчика Гейгера-Мюллера (слева) и результат ее компенсации с помощью фильтра.

К счастью, при высоких энергиях (выше 0,5-1 МэВ) эффективность счетчика Гейгера к гамма-излучению почти пропорциональна энергии. А значит, энергетическая зависимость дозовой чувствительности там невелика. А горб при малых энергиях легко убрать с помощью фильтра из свинца толщиной около 0,5 мм. Толщина фильтра подбирается таким образом, чтобы при энергии, соответствующей максимальной чувствительности детектора (это 50-100 кэВ в зависимости от толщины входного окна детектора) кратность поглощения составляла бы величину этого пика. Чем энергия больше, тем меньше поглощения в свинце, и при 500-1000 кэВ, где чувствительность детектора выравнивается сама, оно уже практически незаметно.

Более точной коррекции можно добиться, используя многослойный фильтр из разных металлов, который нужно подбирать к конкретному счетчику.

Такой фильтр сокращает «ход с жесткостью» до величины в 15-20% во всем диапазоне 50-3000 кэВ и превращает показометр (ну ладно, поисковый радиометр-индикатор) в дозиметр.

Такой фильтр обычно делают съемным, поскольку он делает датчик нечувствительным к альфа- и бета-излучению.

***

В общем-то, это все, что нужно знать про счетчик Гейгера-Мюллера конструктору приборов на его основе. Как видите, прибор и впрямь несложный, хотя ряд тонкостей имеется. В следующей серии мы на его основе что-нибудь полезное сконструируем.

Счетчик Гейгера - прототип современных дозиметров или, как их еще называют, радиометров. С помощью малогабаритного и простого прибора можно узнать уровень радиации еще до того, как он повлияет на здоровье человека.

Что измеряет счетчик Гейгера?

С помощью прибора определяется уровень радиационного излучения предметов и объектов:

  • Строительные материалы
  • Земельный участок
  • Помещение
  • Место отдыха
  • Продукты питания
  • Транспортные средства
  • Предметы быта
  • Одежда
  • Косметика
  • Детские игрушки

Как использовать дозиметр?

Средние показатели радиоактивности, признанные безопасными: 20-30мкР/час. Обычный радиационный фон - 0.22 МкЗв/час. Чтобы измерить уровень радиации, необходимо для начала включить прибор и обнулить показания дисплея. Само исследование занимает не более 60 секунд. При обследовании необходимо тщательно следить за чистотой самого устройства, так как мельчайшая пыль или влага могут повлиять на достоверность показаний. Поэтому прибор рекомендуют использовать в защитном чехле.

Определяем уровень радиации в продуктах

Фрукты и овощи, принесенные с рынка, лесные грибы и ягоды могут быть не безопасными для здоровья. Дозиметр развеет все сомнения - для этого необходимо поднести включенный прибор к продуктам (без упаковки и весом до 1кг) на расстоянии 1-5см. Так же можно узнать уровень радиации в питьевой воде, молоке, других жидких продуктах. Измерение проводится над открытой емкостью с жидкостью. Показания прибора могут быть несколько выше при измерении радиации в чае или сушеных грибах, так как в них концентрированный состав микроэлементов.

Измерение радиации в жилище

Чтобы проверить уровень радиации в помещении, необходимо пройтись с прибором вдоль стен и как можно ближе к полу. Для жилых помещений нормальным уровнем радиации считается 25мкР\ч. Цифра 30мкР/час - это уже предельно допустимая норма для домов, при строительстве которых использовались бетон, гранит, щебень. Важно производить измерения в разных местах дома, так как скрытым источником опасной радиации могут быть мебель, старинные вещи, раритетная техника. Стоит учесть, что кирпичи может давать показания радиоактивности в 2 раза больше допустимой нормы. Поэтому камин или печь измеряют на расстоянии 40-50см.

Измерение уровня радиации на открытом пространстве

Источником радиации могут быть осадки, ветер со стороны предприятий, растения, камни или обычный песок на детской площадке. Дозиметр позволяет с высокой точностью определить источник радиации. Особенно это важно при выборе места для строительства дома, отдыха или просто прогулки по мегаполису. Оценку уровня радиации проводят на расстоянии 1м от почвы и 0,5м от зданий.

В связи с тем, что после катастрофы Чернобыльской АЭС дозиметры стали очень популярны в нашей стране, на рынках появилось очень много подделок и не качественных приборов. Самым надежным продавцом техники для заботы о здоровье является специализированный «Мед-Магазин».

Семь причин, почему дозиметр необходимо приобретать в Мед-Магазине:

1-й Компания сотрудничает с официальными представителями известных торговых марок

2-й Большой выбор позволяет приобрести простейшую модель или дозиметр для профессиональных исследований

3-й Приемлемые цены - от самых недорогих дозиметров до более усовершенствованных моделей

4-й Вся продукция сертифицирована

5-й Покупка оформляется на сайте «Мед-Магазин», не выходя из дома.

6-й Есть возможность замены или возврата товара.

7-й Работает онлайн-служба технической поддержки.

Счетчик Гейгера - основной сенсор для измерения радиации. Он регистрирует гамма-, альфа-, бета-излучение и рентгеновские лучи. Обладает самой высокой чувствительностью в сравнении с другими способами регистрации радиации, например, ионизационными камерами. Это главная причина его повсеместного распространения. Другие сенсоры для измерения радиации используются очень редко. Почти все приборы дозиметрического контроля построены именно на счетчиках Гейгера. Они выпускаются массово, и есть приборы различных уровней: от дозиметров военной приемки до китайского ширпотреба. Сейчас приобрести какой-либо прибор для измерения радиации — не проблема.

Повсеместного распространения дозиметрических приборов еще совсем недавно не было. Так к 1986 году во время чернобыльской аварии оказалось, что у населения нет просто никаких приборов дозиметрической разведки, что кстати, дополнительно усугубило последствия катастрофы. При этом, несмотря на распространение радиолюбительства и кружков технического творчества, счетчики Гейгера не продавались в магазинах, поэтому изготовление самодельных дозиметров было невозможным.

Принцип работы счетчиков Гейгера

Это электровакуумный прибор с предельно простым принципом работы. Датчик радиоактивных излучений представляет собой металлическую или стеклянную камеру с металлизацией, заполненную разряженным инертным газом. По центру камеры располагают электрод. Внешние стенки камеры подключают к источнику высокого напряжения (обычно 400 вольт). Внутренний электрод - к чувствительному усилителю. Ионизирующие излучения (радиация) представляют собой поток частиц. Они буквально переносят электроны от высоковольтного катода в нити анода. На ней просто наводится напряжение, которое можно уже измерить, подключив к усилителю.

Высокая чувствительность счетчика Гейгера обусловлена лавинообразным эффектом. Энергия, которую регистрирует усилитель на выходе, — это не энергия источника ионизирующего излучения. Это энергия высоковольтного блока питания самого дозиметра. Проникшая частица только переносит электрон (энергетический заряд, который превращается в ток, регистрируемый измерителем). Между электродами введена газовая смесь, состоящая из благородных газов: аргона, неона. Она призвана гасить высоковольтные разряды. Если возникнет такой разряд, то это будет ложное срабатывание счетчика. Последующая измерительная схема игнорирует такие выбросы. Кроме того, высоковольтный блок питания тоже должен быть от них защищен.

Схема питания в счетчике Гейгера обеспечивает ток на выходе в нескольких микроампер при выходном напряжении 400 вольт. Точное значение напряжения питания устанавливается для каждой марки счетчика по его технической спецификации.

Возможности счетчиков Гейгера, чувствительность, регистрируемые излучения

С помощью счетчика Гейгера можно зарегистрировать и с высокой точностью измерить гамма- и бета-излучение. К сожалению, нельзя распознать вид излучения напрямую. Это делается косвенным методом с помощью установки преград между сенсором и обследуемым объектом или местностью. Гамма-лучи обладают высокой проницаемостью, и их фон не меняется. Если дозиметр засек бета-излучение, то установка разделительной преграды даже из тонкого листа металла почти полностью перекроет поток бета-частиц.

Распространенные в прошлом комплекты индивидуальных дозиметров ДП-22, ДП-24 не использовали счетчиков Гейгера. Вместо них там использовался сенсор ионизационная камера, поэтому чувствительность была очень низкой. Современные дозиметрические приборы на счетчиках Гейгера обладают в тысячи раз большей чувствительностью. С помощью них можно регистрировать естественные изменения солнечного радиационного фона.

Примечательная особенность счетчика Гейгера - чувствительность, в десятки и сотни раз превышающая необходимый уровень. Если в совершенно защищенной свинцовой камере включить счетчик, то он покажет огромный естественный радиационный фон. Эти показания не являются дефектом конструкции самого счетчика, что было проверено многочисленными лабораторными исследованиями. Такие данные - следствие естественного радиационного космического фона. Эксперимент только показывает, насколько чувствительным является счетчик Гейгера.

Специально для измерения этого параметра в технических характеристиках указывается значение «чувствительность счетчика имп мкр» (импульсов в микросекунду). Чем больше этих импульсов - тем больше чувствительность.

Измерение радиации счетчиком Гейгера, схема дозиметра

Схему дозиметра можно разделить на два функциональных модуля: высоковольтный блок питания и измерительная схема. Высоковольтный блок питания - аналоговая схема. Измерительный модуль на цифровых дозиметрах всегда цифровой. Это счетчик импульсов, который выводит соответствующее значение в виде цифр на шкалу прибора. Для измерения дозы радиации необходимо подсчитать импульсы за минуту, 10, 15 секунд или другие значения. Микроконтроллер пересчитывает число импульсов в конкретное значение на шкале дозиметра в стандартных единицах измерения радиации. Вот самые распространенные из них:

  • рентген (обычно используется микрорентген);
  • Зиверт (микрозиверт - мЗв);
  • Грей, рад,
  • плотность потока в микроваттах/м2.

Зиверт - наиболее популярная единица измерения радиации. К ней соотнесены все нормы, никаких дополнительных пересчетов проводить не требуется. Бэр - единица для определения влияния радиации на биологические объекты.

Сравнение газоразрядного счетчика Гейгера с полупроводниковым датчиком радиации

Счетчик Гейгера является газоразрядным прибором, а современная тенденция микроэлектроники - повсеместное от них избавление. Были разработаны десятки вариантов полупроводниковых сенсоров радиации. Регистрируемый ими уровень радиационного фона значительно выше, чем для счетчиков Гейгера. Чувствительность полупроводникового сенсора хуже, но у него другое преимущество - экономичность. Полупроводникам не требуется высоковольтного питания. Для портативных дозиметров с батарейным питанием они хорошо подходят. Еще одно их преимущество - регистрация альфа-частиц. Газовый объем счетчика существенно больше полупроводникового сенсора, но все равно его габариты приемлемы даже для портативной техники.

Измерение альфа-, бета- и гамма-излучения

Гамма-излучение измерять наиболее просто. Это электромагнитное излучение, представляющее собой поток фотонов (свет - тоже поток фотонов). В отличие от света у него гораздо более высокая частота и очень малая длина волны. Это позволяет ему проникать сквозь атомы. В гражданской обороне гамма-излучение — это проникающая радиация. Она проникает сквозь стены домов, автомобили, различные сооружения и задерживается только слоем земли или бетона в несколько метров. Регистрация гамма-квантов проводится с градуировкой дозиметра по естественному гамма-излучению солнца. Источников радиации не требуется. Совсем другое дело с бета- и альфа-излучением.

Если ионизирующиее излучение α (альфа-излучение) исходит от внешних объектов, то оно почти безопасно и представляет собой поток ядер атомов Гелия. Пробег и проницаемость этих частиц небольшая — нескольких микрометров (максимум миллиметров) — в зависимости от проницаемости среды. Ввиду этой особенности оно почти не регистрируется счетчиком Гейгера. В то же время регистрация альфа-излучения важна, так как эти частицы чрезвычайно опасны при проникновении внутрь организма с воздухом, пищей, водой. Для их декретирования счетчики Гейгера используются ограничено. Больше распространены специальные полупроводниковые сенсоры.

Бета-излучение отлично регистрируется счетчиком Гейгера, потому что бета-частица представляет собой электрон. Она может пролететь сотни метров в атмосфере, но хорошо поглощается металлическими поверхностями. В связи с этим счетчик Гейгера должен иметь окошко из слюды. Металлическая камера изготавливается с небольшой толщиной стенки. Состав внутреннего газа подбирается таким образом, чтобы обеспечить небольшой перепад давления. Детектор бета-излучения ставится на выносном зонде. В быту такие дозиметры мало распространены. Это в основном военная продукция.

Индивидуальный дозиметр с счетчиком Гейгера

Этот класс приборов обладает высокой чувствительностью в отличие от устаревших моделей с ионизационными камерами. Надежные модели предлагаются многими отечественными производителями: «Терра», «МКС-05», «ДКР», «Радэкс», «РКС». Это все автономные приборы с выводом данных на экран в стандартных единицах измерения. Есть режим показания накопленной дозы облучения, так и мгновенного уровня фона.

Перспективное направление - бытовой дозиметр-приставка к смартфону. Такие устройства выпускают зарубежные производители. У них богатые технические возможности, есть функция хранения показаний, калькуляции, пересчета и суммирования излучения за дни, недели, месяцы. Пока что из-за низких объемов производства стоимость этих приборов довольно высокая.

Самодельные дозиметры, зачем они нужны?

Счетчик Гейгера является специфическим элементом дозиметра, совершенно недоступным для самостоятельного изготовления. Кроме того, он встречается только в дозиметрах или продается отдельно в магазинах радиотоваров. Если этот датчик есть в наличии, все остальные компоненты дозиметра могут быть собраны самостоятельно из деталей разнообразной бытовой электроники: телевизоров, материнских плат и др. На радиолюбительских сайтах, форумах сейчас предлагается около десятка конструкций. Собирать стоит именно их, поскольку это самые отработанные варианты, имеющие подробные руководства по настройке и наладке.

Схема включения счетчика Гейгера всегда подразумевает наличие источника высокого напряжения. Типичное рабочее напряжение счетчика - 400 вольт. Его получают по схеме блокинг-генератора, и это самый сложный элемент схемы дозиметра. Выход счетчика можно подключить к усилителю низкой частоты и подсчитывать щелчки в динамике. Такой дозиметр собирается в экстренных случаях, когда времени на изготовление практически нет. Теоретически, выход счетчика Гейгера можно подключить к аудиовходу бытовой аппаратуры, например, компьютера.

Самодельные дозиметры, пригодные для точных измерений, все собираются на микроконтроллерах. Навыки программирования здесь не нужны, так как программа записывается готовой из бесплатного доступа. Сложности здесь типичные для домашнего электронного производства: получение печатной платы, пайка радиодеталей, изготовление корпуса. Все это решается в условиях небольшой мастерской. Самодельные дозиметры из счетчиков Гейгера делают в случаях, когда:

  • нет возможности приобрести готовый дозиметр;
  • нужен прибор со специальными характеристиками;
  • необходимо изучить сам процесс постройки и наладки дозиметра.

Самодельный дозиметр градуируется по естественному фону с помощью другого дозиметра. На этом процесс постройки заканчивается.

Если у вас возникли вопросы - оставляйте их в комментариях под статьей. Мы или наши посетители с радостью ответим на них

Счётчик Гейгера

Счётчик Гейгера СИ-8Б (СССР) со слюдяным окошком для измерения мягкого β-излучения. Окно прозрачно, под ним можно разглядеть спиральный проволочный электрод, другим электродом является корпус прибора.

Дополнительная электронная схема обеспечивает счётчик питанием (как правило, не менее 300 ), обеспечивает, при необходимости, гашение разряда и подсчитывает количество разрядов через счётчик.

Счётчики Гейгера разделяются на несамогасящиеся и самогасящиеся (не требующие внешней схемы прекращения разряда).

Чувствительность счётчика определяется составом газа, его объёмом, а также материалом и толщиной его стенок.

Примечание

Следует отметить, что по историческим причинам сложилось несоответствие между русским и английским вариантами этого и последующих терминов:

Русский English
счётчик Гейгера Geiger sensor
трубка Гейгера Geiger tube
радиометр Geiger counter
дозиметр dosimeter

См. также

  • Коронарный счётчик
  • http://www.u-tube.ru/pages/video/38781 принцип работы

Wikimedia Foundation . 2010 .

Смотреть что такое "Счётчик Гейгера" в других словарях:

    счётчик Гейгера-Мюллера - Geigerio ir Miulerio skaitiklis statusas T sritis fizika atitikmenys: angl. Geiger Müller counter; Geiger Müller counter tube vok. Geiger Müller Zählrohr, n; GM Zählrohr, n rus. счётчик Гейгера Мюллера, m pranc. compteur de Geiger Müller, m; tube … Fizikos terminų žodynas

    разрядный счётчик Гейгера-Мюллера - — Тематики нефтегазовая промышленность EN electronic pulse height analyzer … Справочник технического переводчика

    - … Википедия

    - (Гейгера Мюллера счётчик), газоразрядный детектор, срабатывающий при прохождении через его объём заряж. ч ц. Величина сигнала (импульса тока) не зависит от энергии ч ц (прибор работает в режиме самостоят. разряда). Г. с. изобретён в 1908 нем.… … Физическая энциклопедия

    Газоразрядный прибор для обнаружения ионизирующих излучений (a – и b частиц, g квантов, световых и рентгеновских квантов, частиц космического излучения и т. п.). Счётчик Гейгера – Мюллера представляет собой герметично запаянную стеклянную трубку … Энциклопедия техники

    Гейгера счётчик - Гейгера счетчик ГЕЙГЕРА СЧЁТЧИК, газоразрядный детектор частиц. Срабатывает при попадании в его объем частицы или g кванта. Изобретен в 1908 немецким физиком Х. Гейгером и усовершенствован им совместно с немецким физиком В. Мюллером. Гейгера… … Иллюстрированный энциклопедический словарь

    ГЕЙГЕРА СЧЁТЧИК, газоразрядный детектор частиц. Срабатывает при попадании в его объем частицы или g кванта. Изобретен в 1908 немецким физиком Х. Гейгером и усовершенствован им совместно с немецким физиком В. Мюллером. Гейгера счетчик применяются… … Современная энциклопедия

    Газоразрядный прибор для обнаружения и исследования различного рода радиоактивных и др. ионизирующих излучений: α и β частиц, γ kвантов, световых и рентгеновских квантов, частиц высокой энергии в космических лучах (См. Космические лучи) и … Большая советская энциклопедия

    - [по имени нем. физиков X. Гейгера (Н. Geiger; 1882 1945) и В. Мюллера (W. Muller; 1905 79)] газоразрядный детектор радиоактивных и др. ионизирующих излучений (а и бета частиц, у квантов, световых и рентгеновских квантов, частиц космич. излучения… … Большой энциклопедический политехнический словарь

    Счётчик устройство для счёта чего либо. Счётчик (электроника) устройство для подсчета количества событий, следующих друг за другом (напр. импульсов) с помощью непрерывного суммирования, или для определения степени накопления какой… … Википедия