Расчет и профилирование спирального отвода. Промышленная вентиляционная вытяжная улитка Описание вычислений параметров воздуходувной машины

Все аппараты, независимо от назначения, предназначены для создания потока воздуха (чистого или содержащего примеси других газов или мелкие однородные частицы) разного давления. Оборудование подразделяется на классы по созданию низкого, среднего и высокого давления.

Агрегаты называются центробежными (а также радиальными) из-за способа создания воздушного потока вращением радиального рабочего колеса лопаточного типа (форма барабана или цилиндра) внутри спиральной камеры. Профиль лопатки может быть прямым, изогнутым, «профилем крыла». В зависимости от скорости вращения, типа и количества лопаток давление воздушного потока может варьироваться от 0,1 до 12 кПа. Вращение в одну сторону удаляет газовые смеси, в противоположную — нагнетает чистый воздух в помещение. Изменить вращение можно с помощью перекидного переключателя, меняющего фазы тока местами на клеммах электрического двигателя.

Корпус оборудования общего назначения для работы в неагрессивных газовых смесях (воздух чистый или задымленный, содержание частиц менее 0,1 г/м3) изготавливается из листовой углеродистой или оцинкованной стали различной толщины. Для более агрессивных газовых смесей (присутствуют активные газы или испарения кислот и щелочей) используются коррозионно-устойчивые (нержавеющие) стали. Такое оборудование может работать при температуре среды до 200 градусов тепла. В изготовлении взрывозащищенного варианта для работы в опасных условиях (горное оборудование, большое содержание взрывоопасной пыли) применяются более пластичные металлы (медь) и алюминиевые сплавы. Оборудование для взрывоопасных условий отличается повышенной массивностью и при работе исключает искрение (главную причину взрывов пыли и газов).

Барабан (рабочее колесо) с лопатками изготавливается из сортов стали, не подверженных коррозии и достаточно пластичных, чтобы выдержать длительные вибрационные нагрузки. Форма и количество лопаток проектируются из расчета аэродинамических нагрузок при определенной скорости вращения. Большое количество лопаток, прямых или слегка изогнутых, вращающихся с большой скоростью, создают более устойчивый воздушный поток и издают меньше шума. Но давление воздушного потока все же ниже, чем у барабана, на котором установлены лопатки с аэродинамическим «профилем крыла».

«Улитка» относится к оборудованию с повышенной вибрацией, причины которой именно в низком уровне сбалансированности вращающегося рабочего колеса. Вибрация вызывает два следствия: повышенный уровень шума и разрушение основания, на котором установлен агрегат. Снизить уровень вибрации помогают амортизационные пружины, которые вставляются между основанием корпуса и местом установки. При монтаже некоторых моделей вместо пружин используются резиновые подушки.

Вентиляционные агрегаты — «улитка» комплектуются электродвигателями, которые могут быть снабжены взрывобезопасными корпусами и крышками, улучшенной окраской для работы в агрессивных газовых средах. В основном это асинхронные двигатели с определенной частотой вращения. Электродвигатели рассчитаны на работу от однофазной сети (220 В) или трехфазной (380 В). (Мощность однофазных электродвигателей не превышает 5 — 6 кВт). В исключительных случаях может быть установлен двигатель с управляемой скоростью вращения и тиристорным управлением.

Существуют три способа соединения электродвигателя с валом барабана:

  1. Прямое соединение. Валы соединены с помощью шпоночной втулки. «Конструктивная схема №1».
  2. Через редуктор. Редуктор может иметь несколько передач. «Конструктивная схема №3».
  3. Ременно — шкивная передача. Скорость вращения может меняться если поменять шкивы. «Конструктивная схема №5».

Наиболее безопасным соединением для электродвигателя в случае внезапного заклинивания является ременно — шкивное (если вал рабочего колеса внезапно и резко остановится, повредятся ремни).

Кожух изготавливается в 8 положениях выходного отверстия относительно вертикали, от 0 до 315 через 45 градусов. Это позволяет облегчить крепление агрегата к воздуховоду. Для исключения передачи вибрации фланцы воздуховода и корпуса агрегата соединяются через рукав из толстого прорезиненного брезента или синтетической ткани.

Оборудование окрашивается прочными порошковыми красками с повышенной ударопрочностью.

Популярные модели ВР и ВЦ

1. Вентилятор ВР 80 75 низкого давления

Предназначен для вентиляционных систем производственных и общественных зданий. Условия работы: умеренный и субтропический климат, в неагрессивных условиях. Диапазон температур, пригодный для работы оборудования общего назначения (ОН) от -40 до +40. Жаростойкие модели выдерживают повышение до +200. Материал: углеродистая сталь. Средний уровень влажности: 30-40%. Дымоулавливающие могут в течение 1,5 часа работать при температуре +600.

Рабочее колесо несет 12 изогнутых лопаток, изготовленных из нержавеющей стали.

Коррозионностойкие модели изготавливаются из нержавеющей стали.

Взрывозащищенные — из углеродистой стали и латуни (для нормальной влажности), из нержавеющей стали и латуни (для повышенной влажности). Материал для самых защищенных моделей: алюминиевые сплавы.

Оборудование производится по конструктивным схемам №1 и №5. Мощность двигателей, поставляемых в комплекте — от 0,2 до 75 кВт. Двигатели до 7,5 с частотой вращения до от 750 до 3000 об/мин, более мощные — от 356 до 1000.

Срок службы — более 6 лет.

В номере модели отражен диаметр рабочего колеса: от №2,5 — 0,25м. до №20 — 2 м. (согласно ГОСТ 10616-90).

Параметры некоторых ходовых моделей:

1. ВР 80-75 №2,5: двигатели (Дв) от 0,12 до 0,75 кВт; 1500 и 3000 об/мин; давление (Р) — от 0,1 до 0,8 кПа; производительность (Пр)- от 450 до 1700 м3/ч. Виброизоляторы (Ви)- резиновые. (4 шт) К.с. №1.

2. ВР 80-75 №4: Дв от 0,18 до 7,5 кВт; 1500 и 3000 об/мин; Р — от 0,1 до 2,8 кПа; Пр — от 1400 до 8800 м3/ч. Ви — резиновые. (4 шт) К.с. №1.

3. ВР 80-75 №6,3: Дв от 1,1 до 11 кВт; 1000 и 1500 об/мин; Р — от 0,35 до 1,7 кПа; Пр — от 450 до 1700 м3/ч. Ви — резиновые. (4 шт) К.с. №1.

4. ВР 80-75 №10: Дв от 5,5 до 22 кВт; 750 и 1000 об/мин; Р — от 0,38 до 1,8 кПа; Пр — от 14600 до 46800 м3-ч. Ви — резиновые. (5 шт.) К.с. №1.

5. ВР 80-75 №12,5: Дв от 11 до 33 кВт; 536 и 685 об/мин; Р — от 0,25 до 1,4 ка; Пр — от 22000 до 63000 м3/ч. Ви — резиновые (6 шт) . К.с. №5.

6. Вентилятор ВЦ 14 46 среднего давления.

Рабочие характеристики и материалы для изготовления идентичны ВР за исключением количества лопаток (32 шт).

Номера — от 2 до 8. Конструкционные схемы №1 и №5.

Срок службы — более 6 лет. Гарантийное количество часов отработки — 8000.

Параметры и производительность:

1. ВЦ 14 46 №2: Дв от 0,18 до 2,2 кВт; 1330и 2850об/мин; Р — от 0,26 до 1,2 кПа; Пр — от 300 до 2500 м3/ч. Ви — резиновые. (4 шт) К.с. №1.

2. ВЦ 14 46 №3,15: Дв от 0,55 до 2,2 кВт; 1330 и 2850 об/мин; Р — от 0,37 до 0,8 кПа; Пр — от 1500 до 5100 м3/ч. Ви — резиновые. (4 шт) К.с. №1.

3. ВЦ 14 46 №4: Дв от 1,5 до 7,5 кВт; 930 и 1430 об/мин; Р — от 0,55 до 1,32 кПа; Пр — от 3500 до 8400 м3/ч. Ви — резиновые. (4 шт) К.с. №1.

4. ВЦ 14-46 №6,3: Дв от 5,5 до 22 кВт; 730 и 975 об/мин; Р — от 0,89 до 1,58 кПа; Пр — от 9200 до 28000 м3/ч. Ви — резиновые. (5 шт) К.с. №1,5.

5. ВЦ 14-46 №8: Дв от 5,5 до 22 кВт; 730 и 975 об/мин; Р — от 1,43 до 2,85 кПа; Пр — от 19000 до 37000 м3/ч. Ви — резиновые. (5 шт) К.с. №1,5.

Пылевой вентилятор «улитка»

Вентиляторы пылевые предназначены для жестких условий работы, их предназначение — удалять с места работы воздух с достаточно крупными частицами (галечник, труха, мелкая металлическая стружка, деревянная стружка, щепа). Рабочее колесо несет 5 или 6 лопаток, изготовленных из толстой углеродистой стали. Агрегаты предназначены для работы в вытяжках со станков. Популярны модели ВЦП 7-40. Выполняются по К.с. №5.

Создают давление от 970 до 4000 Па, их можно отнести к классу «среднее и высокое давление». Номера рабочих колес — 5, 6,3 и 8. Мощность Дв — от 5,5 до 45 кВт.

Прочие

Существуют устройства особого класса — для поддува в твердотопливных котлах. Производятся в Польше. Специализированное оборудование для отопительных систем (частных).

Корпус — «улитка» отлит из алюминиевого сплава. Специальная заслонка с системой грузиков исключает попадание воздуха в топку, когда мотор отключен. Устанавливаться может в любом положении. Небольшой двигатель с датчиком температуры, 0,8 кВт. В продаже модели WPA-117k,WPA-120k, различающиеся размерами основания.

В зависимости от размеров и производительности таких агрегатов будут зависеть и условия эксплуатации: помимо бытового использования, многие виды вентиляционной техники широко применяются и в промышленной сфере. Один из примеров такого оборудования – вытяжка улитка закругленной формы.

Радиальный центробежный вентилятор такого типа чаще всего устанавливается в производственных помещениях и используется для очистки воздуха от пыли, опилок, гари, песка и других промышленных отходов. Аналогичная система обработки воздуха может быть установлена и в многоэтажном доме, например, в вентиляционной шахте.

Давайте разберемся с принципом ее действия и рассмотрим основные стадии конструирования вытяжки улитки своими руками.

Особенности конструкции

Вытяжки-улитки отличаются по строению от стандартных вентиляторов с большими лопастями. Потоки воздуха в таком оборудовании перемещаются за счет центробежной силы, возникающей в результате вращения колеса с небольшими лопатками специальной формы. Скорость и мощность работы таких вытяжек может отличаться в зависимости от количества лопаток и параметров мотора .

Схема очистки воздуха в радиальных центробежных вытяжках достаточно проста: при попадании внутрь вытяжки воздух начинает всасываться в ротор, где начинает вращаться и подвергаться давлению, постепенно продвигаясь к выходу и очищаясь от посторонних элементов. Общая форма входного и выходного канала напоминает улитку – отсюда и название такой вытяжки.

Внимание! Конструкции такого типа полезны тем, что могут и всасывать воздух, и обеспечивать его отток.

Корпус вентиляционной системы такого типа изготавливается из прочных материалов, наподобие алюминия, латуни или стали. В продаже имеются и пластиковые конструкции, но они менее долговечны и редко работают с максимальной эффективностью.

Поскольку обработка воздуха может осуществляться при высоких температурах, корпус обрабатывается защитной краской, веществами, стойкими к химикатам, а также покрывается полимерами.

Вращательные механизмы в такой системе могут быть одинарными, а могут включать и два диска с лопатками нужных размеров. И радиальное, и круговое размещение лопастей обеспечивает высокую производительность прибора.

Совет: для лучшей очистки воздуха приобретайте вентиляторы, в которых лопатки имеют слегка загнутую, а не плоскую форму.

Несмотря на единую форму, такие вытяжки подходят для многих условий эксплуатации, так как отличаются и по ориентации на правую или левую сторону, и по общим размерам. В среднем диаметр основного корпуса такой вытяжки может составлять от 25 до 150 см .

Для удобства установки в промышленных целях многие конструкции такого типа создаются модульными, и для их соединения используются крепежные болты. Соответственно, вы сможете менять и угол наклона, и сами детали некоторых частей такой конструкции для большей эффективности работы: лучше предварительно просчитать все параметры со специалистами .

Поскольку улитки могут отличаться друг от друга, не стоит ориентироваться исключительно на размеры и показатели мощности. Ознакомьтесь с их разновидностями – и делайте выбор, полагаясь на будущие условия эксплуатации.

Виды оборудования

Прежде всего, вытяжки-улитки отличаются по показателям давления. Вентиляция может осуществляться в условиях:

  • низкого давления – до 100 кг/м2;
  • среднего – от 100 дл 300 кг/м2;
  • высокого давления – более 300 кг/м2 (может достигать 1200 кг/м2).

Первый тип вытяжек подходит для использования и в промышленных, и в бытовых условиях. Как правило, такая техника достаточно компактна, поэтому может устанавливаться и без дополнительной помощи.

Внимание! Вытяжки с низким давлением достаточно для обеспечения качественного вентилирования воздуха в шахтах многоэтажных зданий.

Вентиляторы со средним давлением используются в промышленных целях. Такое оборудование легче выдерживает сложные условия эксплуатации, оно оборудовано в соответствии с основными пожарными и техническими требованиями на производстве.

Третий вариант используется не только в цехах, но и в лабораториях, складах, помещениях, где осуществляется покраска и т.д. Их можно устанавливать для обдува систем кондиционирования или рабочих станков, а также для нагнетания воздуха в котельных системах.

В зависимости от качества и степени износа конструкции выделяют общие вытяжки-улитки, термостойкие, коррозионностойкие системы, а также сверхпрочное оборудование, которое выдерживает даже взрывные реакции.

В большинстве случаев системы вентилирования воздуха в форме улитки применяются для удаления из помещения галечника, деревянной и металлической стружки, щепок и других остатков производства. Их монтаж должен осуществляться с учетом требований безопасности и охраны труда.

Как сделать своими руками

Одна из особенностей таких улиток – различный ценовой диапазон. Минимальная цена вытяжки улитки будет составлять около 3 тысяч, но такие приборы, как правило, не сильно мощные и весьма ограничены в размерах. Средняя цена качественного агрегата будет превышать 20 тысяч рублей.

Поэтому для бытовых нужд целесообразнее изготовить самодельную улитку для вытяжки. Стандартная конструкция такого корпуса будет состоять из двух частей: в одной зоне разместится двигатель, в другой – продувные лопасти .

Корпус для улитки можно приобрести в строительных магазинах. Если вы собрались изготавливать его собственноручно – заранее приобретите мотор и прочие детали, так как размеры придется подгонять. Корпус лучше изготовить из металлов (например, алюминия и стали). Пластик будет менее стойким к механическим повреждениям, а дерево быстро загорится в случае неисправностей.

Вентилятор в такой системе будет работать на большой скорости. Поэтому неправильное конструирование вытяжки может иметь плохие последствия. Проверьте качество и надежность не только самой основы и крепительных механизмов, но и двигателя, рабочего колеса и вентилятора.

Размеры вентилятора подбираются с учетом площади и степени загрязненности помещения. Промышленные образцы имеют большие размеры.

Важно! При монтаже двигателя внутрь короба такой вытяжки проследите, чтобы конструкция включала охлаждающие отверстия. Высокая температурная нагрузка на систему может привести к взрыву.

Особое внимание уделите выбору внутренних материалов. На работу вентилятора могут повлиять не только температуры, но и мощность потоков воздуха, количество мусора и пыли.

При всасывании воздуха с крупными примесями могут повредиться лопасти вращательного колеса. А для того, чтобы тщательно очистить воздух, агрегат должен работать на большой скорости и под высоким давлением – это создает дополнительную нагрузку на всю внутреннюю конструкцию. Поэтому лучше выбирать детали из прочных материалов, например, стали или алюминия .

  • правильно выбирайте размер и мощность двигателя : учитывайте предельную нагрузку на конструкцию, а также необходимую скорость работы вытяжки;
  • монтируя такую систему вертикально, тщательно проверьте надежность крепления вентилятора и колеса : при стремительных потоках воздуха они могут соскочить или изменить свое месторасположение;
  • материалы, соседствующие с такой вытяжкой, должны быть огнеупорными , как и все детали, используемые при ее сборке;
  • соблюдайте пропорции между отдельными зонами вытяжки : в стандартных моделях, предлагаемых в магазинах, учтено оптимальное соотношение длины и ширины конструкции;
  • если вы не уверены в том, что собранная вытяжка безопасна – обратитесь к специалистам, которые проверят ее исправность .

Обратите внимание, что вытяжки-улитки редко используются в жилых комнатах . Во-первых, они занимают много места, а во-вторых, в помещениях наподобие кухни потоки загрязненного воздуха могут иметь разную направленность, поэтому лучше всего монтировать такую вытяжку в вентиляционной шахте, где концентрируется весь воздух, поступающий из квартиры.

Важную роль в жилых комнатах будет играть и дизайн таких конструкций, а он не отличается разнообразием и не всегда гармонирует с интерьером.

Совет: при размещении такой вытяжки в открытых условиях (на улице) убедитесь, что погодные условия не повлияют на ее функциональность.

Вентиляционные вытяжки-улитки можно использовать не только для очистки воздуха . В бытовых условиях они отлично справятся с отоплением помещения, а также повлияют на влажность в комнате .

Стоимость оборудования, предназначенного для бытовых и промышленных нужд, будет существенно отличаться, но, в любом случае, такие агрегаты имеют достаточную мощность для полноценной работы.

Пример конструирования вытяжки-улитки смотрите в прикрепленном видео.

Краткая характеристика центробежных вентиляторов

Центробежные вентиляторы относятся к категории нагнетателей, отличающихся наибольшим разнообразием конструктивных типов. Колеса вентиляторов могут иметь лопатки загнутые как вперед, так и назад относительно направления вращения колеса. Достаточно распространены вентиляторы с радиальными лопатками.

При проектировании следует учитывать, что вентиляторы с лопатками назад более экономичны и менее шумны.

КПД вентилятора растет с увеличением быстроходности и для колес конической формы с лопатками назад может достигать значения 0,9.

С учетом современных требований к энергосбережению при проектировании вентиляторных установок следует ориентироваться на конструкции вентиляторов, соответствующих отработанным аэродинамическим схемам Ц4-76, 0,55-40 и сходным с ними.

Компоновочные решения определяют КПД вентиляторной установки. При моноблочном исполнении (колесо на валу электропривода) КПД имеет максимальное значение. Использование в конструкции ходовой части (колесо на собственном валу в подшипниках) снижает КПД приблизительно на 2%. Клиноременная передача по сравнению с муфтой дополнительно снижает КПД еще минимум на 3%. Проектные решения зависят от давления вентиляторов и их быстроходности.

По развиваемому избыточному давлению воздушные вентиляторы общего назначения делятся на следующие группы:

1. вентиляторы высокого давления (до 1 кПа);

2. вентиляторы среднего давления (13 кПа);

3. вентиляторы низкого давления (312 кПа).

Некоторые специализированные вентиляторы высокого давления могут развивать давление до 20 кПа.

По быстроходности (удельному числу оборотов) вентиляторы общего назначения подразделяют на следующие категории:

1. быстроходные вентиляторы (11n s 30);

2. вентиляторы средней быстроходности (30n s 60);

3. быстроходные вентиляторы (60n s 80).

Конструктивные решения зависят от требуемой проектным заданием подачи. При больших подачах вентиляторы имеют колеса двустороннего всасывания.

Предлагаемый расчет относится к категории конструктивных и выполняется методом последовательных приближений.

Коэффициенты местных сопротивлений проточной части, коэффициенты изменения скорости и соотношения линейных размеров задаются в зависимости от проектного давления вентилятора с последующей проверкой. Критерием правильности выбора является соответствие расчетного давления вентилятора заданному значению.

Аэродинамический расчет центробежного вентилятора

Для расчета задаются:

1. Отношением диаметров рабочего колеса

2. Отношением диаметров рабочего колеса на выходе и на входе газа:

Меньшие значения выбираются для вентиляторов высокого давления.

3. Коэффициентами потерь напора:

а) на входе в рабочее колесо:

б) на лопатках рабочего колеса:

в) при повороте потока на рабочие лопатки:

г) в спиральном отводе (кожухе):

Меньшие значения вх, лоп, пов, к соответствуют вентиляторам низкого давления.

4. Выбираются коэффициенты изменения скорости:

а) в спиральном отводе (кожухе)

б) на входе в рабочее колесо

в) в рабочих каналах

5. Вычисляется коэффициент потерь напора, приведенный к скорости потока за рабочим колесом:

6. Из условия минимума потерь давления в вентиляторе определяется коэффициент Rв:

7. Находится угол потока на входе в рабочее колесо:

8. Вычисляется отношение скоростей

9. Определяется коэффициент теоретического напора из условия максимума гидравлического коэффициента полезного действия вентилятора:

10. Находится значение гидравлического к.п.д. вентилятора:

11. Определяется угол выхода потока из рабочего колеса, при оптимальном значении Г:

Град.

12. Необходимая окружная скорость колеса на выходе газа:

М/с.

где [кг/м 3 ] - плотность воздуха при условиях всасывания.

13. Определяется необходимое число оборотов рабочего колеса при наличии плавного входа газа в рабочее колесо

Об/мин.

Здесь 0 =0,91,0 - коэффициент заполнения сечения активным потоком. В первом приближении он может быть принят равным 1,0.

Рабочее число оборотов приводного двигателя принимается из ряда значений частот, характерных для электроприводов вентиляторов: 2900; 1450; 960; 725.

14. Наружный диаметр рабочего колеса:

15. Входной диаметр рабочего колеса:

Если действительное отношение диаметров рабочего колеса близко к принятому ранее, то уточнения в расчет не вносятся. Если значение получается больше 1м, то следует рассчитывать вентилятор с двухсторонним всасыванием. В этом случае в формулы следует подставлять половинную подачу 0,5Q .

Элементы треугольника скоростей при входе газа на рабочие лопатки

16. Находится окружную скорость колеса на входе газа

М/с.

17. Скорость газа на входе в рабочее колесо:

М/с.

Скорость С 0 не должна превышать 50 м/с.

18. Скорость газа перед лопатками рабочего колеса:

М/с.

19. Радиальная проекция скорости газа при входе на лопатки рабочего колеса:

М/с.

20. Проекция входной скорости потока на направление окружной скорости принимается равной нулю для обеспечения максимума напора:

С 1u = 0.

Поскольку С 1r = 0, то 1 = 90 0 , то есть вход газа на рабочие лопатки радиальный.

21. Относительная скорость входа газа на рабочие лопатки:

По рассчитанным значениям С 1 , U 1 , 1 , 1 , 1 строится треугольник скоростей при входе газа на рабочие лопатки. При правильном подсчете скоростей и углов треугольник должен замкнуться.

Элементы треугольника скоростей при выходе газа с рабочих лопаток

22. Радиальная проекция скорости потока за рабочим колесом:

М/с.

23. Проекция абсолютной скорости выхода газа на направление окружной скорости на ободе рабочего колеса:

24. Абсолютная скорость газа за рабочим колесом:

М/с.

25. Относительная скорость выхода газа с рабочих лопаток:

По полученным значениям С 2 , С 2u ,U 2 , 2 , 2 строится треугольник скоростей при выходе газа из рабочего колеса. При правильном расчете скоростей и углов треугольник скоростей должен также замкнуться.

26. По уравнению Эйлера производится проверка давления, создаваемого вентилятором:

Расчетное давление должно совпадать с проектным значением.

27. Ширина лопаток на входе газа в рабочее колесо:

здесь: УТ = 0,020,03 -коэффициент утечек газа через зазор между колесом и входным патрубком; u1 = 0,91,0 - коэффициент заполнения входного сечения рабочих каналов активным потоком.

28. Ширина лопаток на выходе газа из рабочего колеса:

где u2 = 0.91.0 - коэффициент заполнения активным потоком выходного сечения рабочих каналов.

Определение углов установки и числа лопаток рабочего колеса

29. Угол установки лопатки на входе потока в колесо:

где i - угол атаки, оптимальные значения которого лежат в пределах -3+5 0 .

30. Угол установки лопатки на выходе газа из рабочего колеса:

где - угол отставания потока вследствие отклонения потока в косом срезе межлопаточного канала. Оптимальные значения обычно принимаются из интервала у = 24 0 .

31. Средний установочный угол лопатки:

32. Число рабочих лопаток:

Округляем число лопаток до целого четного числа.

33. Уточняется принятый ранее угол отставания потока по формуле:

где k = 1,52,0 при загнутых назад лопатках;

k = 3,0 при радиальных лопатках;

k = 3,04,0 при загнутых вперед лопатках;

Уточненное значение угла должно быть близким к предварительно заданному значению. В противном случае следует задаться новым значением у.

Определение мощности на валу вентилятора

34. Полный КПД вентилятора: 78.80

где мех = 0,90,98 - механический к.п.д. вентилятора;

0,02 -величина утечек газа;

д = 0,02 - коэффициент потери мощности на трение рабочего колеса о газ (дисковое трение).

35. Необходимая мощность на валу двигателя:

25,35 кВт.

Профилирование лопаток рабочего колеса

Наиболее часто применяются лопатки, очерченные по дуге окружности.

36. Радиус лопаток колеса:

37. Радиус центров находим по формуле:

R ц =, м.


Построение профиля лопаток может быть выполнено также в соответствии с рис. 3.

Рис. 3. Профилирование лопаток рабочего колеса вентилятора

Расчет и профилирование спирального отвода

У центробежного вентилятора отвод (улитка) имеет постоянную ширину B , существенно превышающую ширину рабочего колеса.

38. Ширину улитки выбирают конструктивно:

В 2b 1 =526 мм.

Очертания отвода чаще всего соответствуют логарифмической спирали. Ее построение выполняется приближенно по правилу конструкторского квадрата. При этом сторона квадрата a в четыре раза меньше раскрытия спирального корпуса A .

39. Величину А определяем из соотношения:

где средняя скорость газа на выходе из улитки С а находится из соотношения:

С а =(0,60,75)*С 2u =33,88 м/с.

а = А /4 =79,5 мм.

41. Определим радиусы дуг окружностей, образующих спираль. Исходной окружностью для образования спирали улитки является окружность радиуса:

Радиусы раскрытия улитки R 1 , R 2 , R 3 , R 4 находим по формулам:

R 1 = R Н +=679,5+79,5/2=719,25 мм;

R 2 = R 1 + а =798,75 мм;

R 3 = R 2 + a =878,25 мм;

R 4 = R 3 + а =957,75 мм.

Построение улитки выполняется в соответствии с рис. 4.

Рис. 4.

Вблизи рабочего колеса отвод переходит в так называемый язык, разделяющий потоки и уменьшающий перетечки внутри отвода. Часть отвода, ограниченную языком, называют выходной частью корпуса вентилятора. Длина выходного отверстия C определяет площадь выходного отверстия вентилятора. Выходная часть вентилятора является продолжением отвода и выполняет функции криволинейного диффузора и напорного патрубка.

Положение колеса в спиральном отводе задают, исходя из минимума гидравлических потерь. Для уменьшения потерь от дискового трения колесо смещено к задней стенке отвода. Зазор между основным диском колеса и задней стенкой отвода (со стороны привода) с одной стороны, и колесом и языком с другой, определяется аэродинамической схемой вентилятора. Так, например, для схемы Ц4-70 они составляют соответственно 4 и 6,25%.

Профилирование всасывающего патрубка

Оптимальная форма всасывающего патрубка соответствует суживающимся сечениям по ходу газа. Сужение потока увеличивает его равномерность и способствует ускорению при входе на лопатки рабочего колеса, что уменьшает потери от удара потока о кромки лопаток. Лучшими показателями обладает плавный конфузор. Сопряжение конфузора с колесом должно обеспечивать минимум протечек газа с нагнетания на всос. Величина протечек определяется зазором между выходной частью конфузора и входом в колесо. С этой точки зрения зазор должен быть минимален, его реальное значение должно зависеть только от величины возможных радиальных биений ротора. Так, для аэродинамической схемы Ц4-70 размер зазора составляет 1% от наружного диаметра колеса.

Лучшими показателями обладает плавный конфузор. Однако в большинстве случаев оказывается достаточно обычного прямого конфузора. Входной диаметр конфузора должен быть больше диаметра всасывающего отверстия колеса в 1,32,0 раза.

Создание воздушного потока с высокой плотностью возможно несколькими способами. Одним из эффективных является вентилятор радиального типа или «улитка». Он отличается от других не только формой, но и принципом работы.

Устройство и конструкция вентилятора

Для движения воздуха иногда недостаточно крыльчатки и силового агрегата. В условиях ограниченного пространства следует применять особый вид конструкции вытяжного оборудования. Он приставляет собой спиралевидный корпус, выполняющий функцию воздушного канала. Ее можно сделать своими руками или приобрести уже готовую модель.

Для формирования потока в конструкции предусмотрено радиальное рабочее колесо. Оно соединяется с силовым агрегатом. Лопатки колеса имеют загнутую форму и при движении создают разряженную область. В нее поступает воздух (или газ) из входного патрубка. При продвижении по спиралевидному корпусу возрастает скорость на выходном отверстии.

В зависимости от области применения центробежный вентилятор улитка может быть общего назначения, термостойкий или защищенный от коррозии. Также необходимо учитывать величину создаваемого воздушного потока:

  • низкого давления. Область применения – производственные цеха, бытовые приборы. Температура воздуха не должна превышать +80°С. Обязательное отсутствие агрессивных сред;
  • среднее значение давления. Является частью вытяжного оборудования для удаления или транспортировки материалов небольшой фракции, опилок зерна;
  • высокого давления. Формирует приток воздуха в зону сгорания топлива. Устанавливается в котлах многих типов.

Направление движения лопастей определяется конструкцией, а, в частности, месторасположением выходного патрубка. Если он располагается в левой части — ротор должен крутиться по часовой стрелке. Также учитывается количество лопастей и их кривизна.

Для мощных моделей необходимо сделать своими руками надежное основание с фиксацией корпуса. Промышленная установка будет сильно вибрировать, что может привести к ее постепенному разрушению.

Самостоятельное изготовление

Прежде всего следует определиться с функциональным назначением центробежного вентилятора. Если он необходим для вентиляции определенной части помещения или оборудования – корпус можно сделать из подручных материалов. Для комплектации котла потребуется применить жаропрочную сталь либо сделать его из листов нержавейки своими руками.

Сначала рассчитывается мощность и определяется набор комплектующих. Оптимальным вариантом будет демонтаж улитки со старого оборудования – вытяжки или пылесоса. Преимуществом этого способа изготовления является точное соответствие мощности силового агрегата и параметров корпуса. Вентилятор улитка легко изготавливается своими руками лишь для каких-то прикладных целей небольшой домашней мастерской. В остальных случаях рекомендуется приобрести уже готовую модель промышленного типа или же взять старую из автомобиля.

Порядок действий, чтобы сделать центробежный вентилятор своими руками.

  1. Расчет габаритных размеров. Если устройство будет монтироваться в ограниченном пространстве – предусматривают специальные демпферные прокладки для компенсации вибрации.
  2. Изготовление корпуса. При отсутствии уже готовой конструкции можно использовать листы пластика, сталь или фанеру. В последнем случае особое внимание уделяется герметизации стыков.
  3. Схема установки силового агрегата. Он вращает лопасти, поэтому следует выбрать тип привода. Для небольших конструкций используется вал, соединяющий редуктор двигателя с ротором. В мощных установках применяется привод ременного типа.
  4. Крепежные элементы. Если вентилятор будет установлен на внешнем корпусе, например, котла – делают монтажные П-образные пластины. При значительных мощностях потребуется изготовить надежное и массивное основание.

Это общая схема, по которой можно сделать вытяжной функциональный центробежный агрегат своими руками. Она может измениться в зависимости от наличия комплектующих. Важно соблюдать требования герметизации корпуса, а также обеспечить надежную защиту силового агрегата от возможного засорения пылью и мусором.

Во время работы вентилятор будет сильно шуметь. Уменьшить это будет проблематично, так как вибрацию корпуса при движении воздушных потоков практически невозможно компенсировать своими руками. В особенности это актуально для моделей из металла и пластика. Дерево может частично уменьшить звуковой фон, но при этом оно обладает небольшим сроком эксплуатации.

В видеоматериале можно ознакомиться с процессом изготовления корпуса из ПВХ листов:

Обзор и сравнение производственных готовых моделей

Рассматривая радиальный вентилятор улитка, надо учесть материал изготовления: литой корпус из алюминия, листовая или нержавеющая сталь. Подбирается модель исходя из конкретных нужд, рассмотрим пример серийных моделей в литом корпусе.








У центробежного вентилятора отвод (улитка) имеет постоянную ширину B , существенно превышающую ширину рабочего колеса.

38. Ширину улитки выбирают конструктивно:

В »2b 1 =526 мм.

Очертания отвода чаще всего соответствуют логарифмической спирали. Ее построение выполняется приближенно по правилу конструкторского квадрата. При этом сторона квадрата a в четыре раза меньше раскрытия спирального корпуса A .

39. Величину А определяем из соотношения:

где средняя скорость газа на выходе из улитки С а находится из соотношения:

С а =(0,6¸0,75)*С 2u =33,88 м/с.

а = А /4 =79,5 мм.

41. Определим радиусы дуг окружностей, образующих спираль. Исходной окружностью для образования спирали улитки является окружность радиуса:

, мм.

Радиусы раскрытия улитки R 1 , R 2 , R 3 , R 4 находим по формулам:

R 1 = R Н + =679,5+79,5/2=719,25 мм;

R 2 = R 1 + а =798,75 мм;

R 3 = R 2 + a =878,25 мм;

R 4 = R 3 + а =957,75 мм.

Построение улитки выполняется в соответствии с рис. 4.

Рис. 4. Профилирование улитки вентилятора по методу конструкторского квадрата

Вблизи рабочего колеса отвод переходит в так называемый язык, разделяющий потоки и уменьшающий перетечки внутри отвода. Часть отвода, ограниченную языком, называют выходной частью корпуса вентилятора. Длина выходного отверстия C определяет площадь выходного отверстия вентилятора. Выходная часть вентилятора является продолжением отвода и выполняет функции криволинейного диффузора и напорного патрубка.