О точности радиоуглеродного метода датирования. Точность радиоуглеродного анализа поставили под сомнение

Радиоуглеродный метод, разработанный более 60 лет назад и отмеченный Нобелевской премией, первоначально использовался для определения возраста археологических и геологических объектов, но вскоре сфера его применения существенно расширилась. Метод доказал свою универсальность и с большим успехом продолжает применяться в науке, технике, медицине и других областях человеческой деятельности.

Радиоуглеродный метод оказывает существенное влияние на развитие разных областей науки - от ядерной физики до криминалистики, но в первую очередь геологии и археологии. В марте 1949 г. была опубликована статья, в которой обосновывался принцип работы данного метода . Его авторы - учёные из Университета Чикаго (США) Уиллард Ф. Либби, Эрнст С. Андерсон и Джеймс Р. Арнольд - показали, что могут определить возраст геологических или исторических событий, которые имели место не только сотни и первые тысячи лет назад, но и вплоть до 40-50 тыс. лет назад. При этом предложенный метод обладал достаточно высокой точностью и был совершенно независим от других технологий, применявшихся в то время в науках о Земле и в археологии. Можно без преувеличения сказать, что радиоуглеродный метод произвёл подлинную революцию в представлениях о времени в научном знании. Признанием важности этого открытия явилось присуждение У.Ф. Либби в 1960 г. Нобелевской премии по химии.

В данной статье даётся краткая информация об открытии и становлении метода, его физических основах; затем следует обзор применения радиоуглеродного метода в различных областях науки и технологий, его влияния на систему научных знаний XX в. в целом. Существует обширная литература, посвящённая радиоуглеродному методу (см., например: ), поэтому в статье автор ссылается лишь на самые общие и исчерпывающие источники.

Сразу после первых работ У.Ф. Либби и его коллег Американская антропологическая ассоциация и Геологическое общество США создали специальную комиссию для оценки первых результатов радиоуглеродного датирования, которая в 1951 г. пришла к выводу о надёжности полученных данных и их соответствии существующей научной парадигме. Научное сообщество с энтузиазмом восприняло новый исследовательский подход и стало активно использовать его при изучении прошлого Земли и человечества; на многие годы метод стал ведущим в определении возраста тех или иных объектов. С середины 1950-х годов радиоуглеродный метод распространился по всему миру.

Были у нового метода и противники. Так, археологи В. Милойчич и С. Яманоучи считали, что радиоуглеродные даты доисторических памятников Европы и Японии слишком удревнены, однако развитие археологических знаний в этих регионах подтвердило правильность радиоуглеродного метода . Одновременно с накоплением фактического материала, то есть радиоуглеродных дат, шло постоянное совершенствование методических основ, заложенных основоположниками метода, и к концу 1970-х годов были сформулированы базовые положения радиоуглеродного метода с учётом новых данных .

Основы радиоуглеродного метода

В природной среде Земли химический элемент углерод состоит из трёх изотопов: двух стабильных – 12 С и 13 С и одного радиоактивного – 14 С, или радиоуглерода. Изотоп 14 С постоянно образуется в стратосфере Земли в результате бомбардировки атомов азота нейтронами, входящими в состав космических лучей (рис. 1, уровень «образование»). В течение нескольких лет «новорождённый» 14 С наряду со стабильными изотопами 12 С и 13 С попадает в кругооборот углерода Земли в атмосфере, биосфере и гидросфере (см. рис. 1, уровень «распределение»). Пока организм находится в состоянии обмена веществ с окружающей его средой (например, дерево получает углерод в виде углекислого газа из атмосферы в результате фотосинтеза), содержание 14 С в нём остаётся постоянным и находится в равновесии с концентрацией данного изотопа в атмосфере. Когда организм отмирает, обмен углеродом с внешней средой прекращается; содержание радиоактивного изотопа начинает уменьшаться, так как уже нет притока «свежего» 14 С извне (см. рис. 1, уровень «распад»). Радиоактивный распад любого элемента происходит с постоянной скоростью, которая весьма точно определена. Так, для изотопа 14 С период полураспада составляет около 5730 лет. Следовательно, зная изначальное количество 14 С в организме по отношению к стабильным изотопам 12 С и 13 С в состоянии равновесия (когда организм жив) и содержание 14 С в ископаемых остатках, можно установить, сколько времени прошло с момента смерти углеродсодержащей субстанции. Такова суть модели, созданной У.Ф. Либби с соавторами. Несмотря на то, что в своём развитии радиоуглеродный метод прошёл через ряд значительных обновлений, по выражению К. Ренфрю – «революций» , его основы, заложенные в 1949 г., остаются неизменными по сей день .

Иными словами, находя в природе и на поселениях древнего человека остатки растений и животных, а также некоторые другие вещества, содержащие углерод, можно с помощью радиоуглеродного метода определить, сколько времени прошло с момента прекращения жизни организма, то есть установить возраст данных объектов. А это, в свою очередь, значит, что можно ответить на извечный вопрос геологов и археологов: как давно существовал данный организм или древнее поселение? Радиоуглеродный метод позволяет установить возраст углеродсодержащих веществ вплоть до 47 000 14 С лет, что соответствует астрономическому возрасту около 50 000 лет .

Известно, что химический элемент углерод входит в состав практически всей живой материи, а также во многие вещества из разряда неживых (то есть созданных без участия живых организмов). Таким образом, радиоуглеродный метод поистине универсален. С его помощью определяется возраст целого ряда объектов, которые можно условно разделить на следующие группы: «геологические» – карбонатные осадки океанов и пресноводных водоёмов, ледяные керны, метеориты; «биологические» – древесина и древесный уголь, семена, плоды и веточки растений, торф, почвенный гумус, пыльцевые зёрна, остатки насекомых и рыб, кости, рога, бивни, зубы, волосы, кожа и шкура позвоночных животных и человека, копролиты; «антропогенные» – жжёные кости, керамика, кричный металл, пригоревшие остатки пищи, следы крови на древних орудиях, ткани, папирус, пергамент и бумага. В некоторых случаях, например, для изучения колебаний содержания 14 С в зависимости от солнечной активности, измеряется его активность в таких «экзотических» объектах, как вина, виски и коньяки.

Радиоуглеродные лаборатории и их аппаратура

Первым коллективом, начавшим разрабатывать радиоуглеродный метод, была группа У.Ф. Либби в Чикаго. С начала 1950-х годов количество лабораторий в США, Канаде, Европе и Японии намного выросло, и в конце 1970-х их было уже более 100 (рис. 2: по , с дополнениями); в настоящее время их насчитывается около 140 на всех континентах. Всего в мире во второй половине XX в. работало 250 установок измерения содержания 14 С. В конце 1970-х годов появились первые лаборатории, использующие ускорительную масс-спектрометрию (УМС), сейчас их уже 40. Список радиоуглеродных лабораторий регулярно обновляется и публикуется в главном издании по данной тематике – международном журнале «Radiocarbon» (в открытом доступе: www.radiocarbon.org).

Первая радиоуглеродная лаборатория в нашей стране была организована в 1956 г. при Радиевом институте АН СССР и Ленинградском отделении Института археологии АН СССР (ныне Институт истории материальной культуры РАН); вдохновителями её создания были И.Е. Старик и С.И. Руденко.

В настоящее время в России реально работают 7 лабораторий : в Москве – в Геологическом институте РАН, Институте географии РАН, Институте проблем экологии и эволюции им. А.Н. Северцова РАН; в Санкт-Петербурге – в Институте истории материальной культуры РАН, Санкт-Петербургском государственном университете и ВСЕГЕИ; в Новосибирске – в Институте геологии и минералогии СО РАН.

Для проведения радиоуглеродных исследований потребовались сложные приборы, создание которых было важнейшей частью становления метода. К ним относятся: сеточно-стенной счётчик Гейгера-Мюллера с твёрдым углеродом как носителем 14 С (У.Ф. Либби, конец 1940-х годов); пропорциональный газовый счётчик (используется с 1950-х годов); жидкостно-сцинтилляционный счётчик – наиболее распространённый сегодня тип прибора (используется с 1960-х годов); ускорительный масс-спектрометр.

УМС-аппаратура – самая высокотехнологичная, сложная и дорогостоящая. Несмотря на это, число УМС-лабораторий в мире непрерывно растёт. На рисунке 3 – УМС-установка Университета Аризоны с рабочим напряжением 3 млн. эВ . Вкратце принцип её работы (рис. 3, а) можно описать следующим образом: отрицательные ионы углерода С? (включающие и изотоп 14 С), получаемые в ионном источнике (рис. 3, б), разгоняются в ускорительном танке (рис. 3, в) и поступают на измерение их количества в детекторе (рис. 3, г). После этого можно установить число атомов 14 С в образце и, зная их изначальное количество (измеренное для «современных» образцов различных материалов), определить возраст очень небольших образцов (вплоть до 0.1 мг углерода и менее). Данный метод обладает одним несомненным преимуществом: для получения радиоуглеродной даты необходимо примерно в 1000 раз меньше углерода, чем при использовании «традиционных» жидкостно-сцинтилляционного и пропорционального газового методов; в остальном (нижняя граница чувствительности, требования к отбору образцов, их подготовка и др.) метод УМС мало чем от них отличается.

Применение радиоуглеродного метода

Археология и четвертичная геология были и остаются главными областями использования радиоуглеродного метода. В археологии применение независимого способа определения возраста стало поистине революционным и в значительной степени изменило существовавшие археологические концепции . Проводить серьёзные археологические работы без применения радиоуглеродного датирования в настоящее время невозможно . Теперь наряду с анализом «рутинных» объектов, к которым можно отнести древесину, древесный уголь и кости, всё чаще проводится определение возраста (в основном методом УМС) таких непригодных в недалёком прошлом материалов, как отдельные семена и плоды растений, текстиль, жирные кислоты (липиды) в древней керамике и сама керамика, остатки крови на каменных орудиях, наскальная живопись. Общее количество полученных радиоуглеродным методом дат для археологических памятников в мире составляет сегодня, видимо, несколько сотен тысяч ; к началу 1960-х было не более 2400 .

Результаты использования радиоуглеродного метода в археологии Старого и Нового Света обобщены в сводных работах . Из наиболее интересных и важных примеров можно назвать датирование Туринской плащаницы , рукописей Мёртвого моря , наскальных рисунков в пещерах Франции и Испании , древнейших в мире стоянок с керамикой и земледелием . Широкие возможности открыл радиоуглеродный метод археологам и дендрохронологам, которые теперь могут «привязать» свои данные к абсолютной шкале времени с помощью так называемого «сопоставления флуктуаций». В данном случае флуктуации есть резкие изменения содержания изотопа 14 С в течение последних 10–12 тыс. лет, которые могут быть идентифицированы и сопоставлены с зафиксированными на международно признанной кривой пиками .

В датировании древних памятников не обошлось без разоблачения подделок. Ещё на заре радиоуглеродного метода один из первых образцов, предположительно из Древнего Египта, оказался современной копией . Хрестоматийным примером является датирование пилтдаунского «человека» из Англии (ожидаемый возраст – не менее 75 000 лет, реальный – 500–600 лет) и остатков «Ноева ковчега» на горе Арарат (их возраст составил всего 1200–1400 лет, а не как минимум 5000 лет согласно библейской хронологии) .

В четвертичной геологии и палеогеографии радиоуглеродный метод применяется так же широко, как и в археологии. С его помощью установлены хронологические параметры основных тёплых и холодных эпох за последние 40–50 тыс. лет , особенно для последних 10 тыс. лет (эпоха голоцена) (см., например: ). Литература по применению радиоуглеродного метода в геологии чрезвычайно обширна (см., например: ), поэтому остановимся лишь на некоторых примерах: геохронология второй половины позднего плейстоцена Сибири , датирование извержений вулканов Камчатки ; хронология ледникового века северо-запада Европейской России и севера Евразии в целом .

Радиоуглеродный метод стал важнейшим инструментом в изучении процесса вымирания крупных млекопитающих (так называемой мегафауны) в конце новейшего геологического периода – плейстоцена (от 2.6 млн. до 10 тыс. лет назад). На основе массового радиоуглеродного датирования ископаемых остатков мамонтов, шерстистых носорогов и ряда других видов животных удалось установить время и место их окончательного вымирания . Одним из важнейших достижений стало определение возраста костей и бивней мамонтов о. Врангеля (Северо-Восточная Сибирь): останки оказались удивительно «молодыми» – от 9000 до 3700 лет назад ; на сегодня это самые поздние мамонты на Земле. Не менее интересны результаты радиоуглеродного датирования костей ископаемого гигантского оленя с рогами размахом до 4 м: его последние представители обитали на Южном Урале и в Зауралье вплоть до 6900 лет назад . В последнее время c помощью прямого УМС-датирования скорлупы яиц азиатского страуса получены данные о его существовании в Восточной и Центральной Азии до 8000 лет назад .

Широко используется радиоуглеродный метод в геофизике, океанологии, биологии, медицине и многих других науках. Измерения содержания 14 С в морской воде прочно вошли в практику океанологических исследований (это позволяет выявить закономерности циркуляции вод Мирового океана) и в изучение грунтовых вод суши и минеральных источников. Динамично развивающимся направлением можно назвать исследование содержания 14 С в таких объектах, как метеориты и ледники . Радиоуглеродный метод помогает в изучении астрофизических явлений – колебаний солнечной активности, взрывов сверхновых звёзд и др. .

Большую роль играет измерение активности изотопа 14 С в исследованиях, связанных с «техногенным» радиоуглеродом. Как известно, во второй половине 1950-х годов в связи с началом испытаний водородных бомб в атмосфере произошло образование «искусственного» 14 С в результате испускания большого количества свободных нейтронов в момент ядерного взрыва (см. рис. 1, уровень «образование»), и природный фон был сильно нарушен. К 1965 г. содержание изотопа 14 С превысило его «добомбовое», то есть фоновое, количество почти в 2 раза – 190% по отношению к уровню 1950 г. (рис. 4) и даже сегодня всё ещё не вернулось к исходному состоянию. Сейчас активность 14 С составляет около 105–110% от таковой в 1950 г. , появился даже термин «послебомбовый 14 С». Однако нет худа без добра: данное явление широко используется для определения времени гибели молодых (не старше 40–50 лет) организмов ; иногда с помощью такого подхода удаётся разоблачить подделки древних человеческих мумий . На феномене искусственного обогащения атмосферы 14 С в 1950–1960-е годы построены многие биомедицинские исследования, где изотоп 14 С является своеобразной «меткой» (см., например: ). С помощью измерения активности 14 С проводятся исследования загрязнения природной среды радионуклидами, выделяемыми при производстве топлива для атомной промышленности. И уж совсем «экзотическим» можно назвать использование радиоуглеродного метода в криминалистике для выявления торговли слоновой костью (животные, убитые после 1955–1960 гг., имеют высокое «послебомбовое» содержание 14 С в бивнях) и контрабанды наркотиков (также на основе «послебомбового» эффекта) . Поистине, сферы применения этого метода почти безграничны!

Одним из направлений радиоуглеродных исследований, важным для всех наук, в 1960–2000-х годах стала калибровка 14 С-дат . Необходимость калибровки вызвана тем обстоятельством, что количество изотопа 14 С в атмосфере, гидросфере и биосфере не оставалось постоянным (как полагали поначалу У.Ф. Либби и его коллеги), а изменялось под воздействием ряда внешних условий, главное из которых – колебания в недавнем геологическом прошлом активности космических лучей, продуцирующих радиоуглерод (см. рис. 1). Следовательно, зависимость между 14 С и календарным возрастом не является линейной. Влияние этого фактора, осложняющего перевод радиоуглеродного возраста в астрономические (календарные) даты, в настоящее время преодолено для отрезка времени от наших дней до 20 000 лет назад; успешно ведутся работы по составлению графиков пересчёта 14 С-дат в календарные вплоть до предела чувствительности радиоуглеродного метода (около 45 000–50 000 14 С лет) .

Перспективы радиоуглеродного метода

Имеется много примеров влияния 14 С-метода на развитие научного знания и пересмотр ряда положений. Так, именно на основании результатов 14 С-датирования разрезов позднеплейстоценовых и голоценовых отложений удалось построить надёжную хронологическую основу для истории климата и природной среды Земли в целом, что крайне важно при прогнозировании климатических изменений в будущем.

Яркой иллюстрацией влияния радиоуглеродного метода на современные науку и культуру является определение возраста одной из самых известных христианских реликвий – Туринской плащаницы (которая, по преданию, служила погребальным покровом Иисуса Христа). Он оказался равен около 690 14 С лет, что соответствует 1260–1390 гг. н.э. . Очевидно, что в этом случае Туринская плащаница не имеет ничего общего с эпохой жизни Христа, которая, по библейской хронологии, датируется около 1–35 гг. н.э. Критика вывода о «молодом возрасте» плащаницы (с попыткой его опровергнуть) была предпринята группой Д.А. Кузнецова , однако детальное изучение описанных ими процессов не нашло подтверждения . Таким образом, результаты датирования Туринской плащаницы можно рассматривать как научно достоверные, а необходимость подтверждения или уточнения с помощью радиоуглеродного метода возраста важных объектов искусства, истории и религии (картины, гравюры, рукописи, плащаницы, кости и мощи святых и т.п.) стала после этого очевидной .

Другой весьма показательный пример – прямое определение возраста древних людей путём 14 С-датирования их костей. Предпринятые за последние 15–20 лет в этом направлении работы с остатками неандертальцев (Homo neanderthalensis) и людей современного типа (Homo sapiens sapiens) в Европе, Северной Америке и Азии показали, что в ряде случаев возраст костей гораздо «моложе» того, который был получен по археологическим или антропологическим данным . Тем не менее для большинства объектов полученные 14 С-даты вполне совпадают с ожидаемыми результатами.

Открытость и свободный доступ к информации – один из основных принципов работы сообщества специалистов, использующих 14 С-метод. Так, постоянно проводятся межлабораторные сверки радиоуглеродного возраста специально отобранных образцов. Идёт работа по совершенствованию процедуры калибровки 14 С-дат, которая зависит прежде всего от степени достоверности исходных данных. В последние годы получены результаты, которые позволяют надеяться, что вскоре будет возможна надёжная калибровка 14 С-дат вплоть до 50 000 лет назад.

В ближайшее время наиболее перспективным станет использование небольших УМС-установок, требования к эксплуатации которых не такие жёсткие, как для машин с рабочим напряжением 3–6 млн. эВ, а возможности компактного по размерам оборудования весьма велики. Немаловажным фактором оказывается и цена таких небольших (рабочее напряжение 200–500 тыс. эВ) приборов, она в несколько раз ниже стоимости крупных установок. Таким образом, расширяются возможности датировать напрямую очень малые или ценные объекты – произведения искусства, кости палеолитических людей и т.п., список объектов постоянно пополняется. Так, в последние годы УМС-методом устанавливают возраст кальцинированных костей из погребений по обряду кремации ; такие «поля погребений» распространены в Европе и Сибири. К приоритетным направлениям относится и исследование вариаций содержаний изотопа 14 С в атмосфере вплоть до 50 000 лет назад на основе изучения озёрных ленточных отложений (с годичной слоистостью). Это, в частности, позволит проводить корреляцию природных и культурных событий не только для недавнего прошлого человечества, но и для всего позднего палеолита (до 35 000– 40 000 лет назад). Один из наиболее важных аспектов охраны окружающей среды – мониторинг радиоактивного загрязнения – в настоящее время немыслим без измерения активности изотопа 14 С в различных природных и техногенных объектах.

Большой научный и практический потенциал применения радиоуглеродного метода, вероятно, не будет исчерпан и в XXI в. Являясь одним из наиболее универсальных и точных способов определения геологического и археологического возраста, а также будучи чувствительным индикатором загрязнения природной среды радиоактивными материалами и другими углеродсодержащими веществами, радиоуглеродный метод сегодня востребован в самых различных сферах фундаментальной науки и прикладных исследований. Это лишний раз подтверждает прозорливость У.Ф. Либби и его учеников – основоположников нового научного направления.

Первая публикация: Вестник Российской Академии Наук, 2011, том 81, № 2, с. 127–133

Литература:

1. Libby W.F., Anderson E.C., Arnold J.R. Age determination by radiocarbon content: world-wide assay of natural radiocarbon // Science. 1949. V. 109. № 2827. P. 227–228.

2. Вагнер Г.А. Научные методы датирования в геологии, археологии и истории. М.: Техносфера, 2006.

3. Taylor R.E. Radiocarbon dating // Handbook of Archaeological Science. Chichester: John Wiley & Sons, 2001. P. 23–34.

4. Kuzmin Y.V. Radiocarbon and Old World archaeology: shaping a chronological framework // Radiocarbon. 2009. V. 51. № 1. P. 149–172.

5. Stuiver M., Polach H. Discussion: reporting of 14C data // Radiocarbon. 1977. V. 19. № 3. P. 355–363.

6. Арсланов Х.А. Радиоуглерод: геохимия и геохронология. Л.: Изд-во ЛГУ, 1987.

7. Дергачёв В.А., Векслер В.С. Применение радиоуглеродного метода для изучения природной среды прошлого. Л.: Изд-во ФТИ АН СССР, 1991.

8. IntCal09: Calibration Issue / Ed. Reimer P.J. // Radiocarbon. 2009. V. 51. № 4. P. 1111–1186.

9. Waterbolk H.T. Archaeology and radiocarbon dating 1948–1998: a golden alliance // M?moires de la Societ? Pr?historique Fran?aise. 1999. T. 26. P. 11–17.

10. Jull A.J.T. AMS method // Encyclopedia of Quaternary Science. V. 4. Amsterdam: Elsevier B.V., 2007. P. 2911–2918.

11. Taylor R.E. Six decades of radiocarbon dating in New World archaeology // Radiocarbon. 2009. V. 51. № 1. P. 173–211.

12. Radiocarbon after Four Decades: An Interdisciplinary Perspective / Eds. Taylor R.E., Long A., Kra R.S. New York?Berlin?Heidelberg: Springer-Verlag, 1992.

13. Damon P.E., Donahue D.J., Gore B.H. et al. Radiocarbon dating of the Shroud of Turin // Nature. 1989. V. 337. № 6208. P. 611–615.

14. Jull A.J.T., Donahue D.J., Broshi M., Tov E. Radiocarbon dating of scrolls and linen fragments from the Judean Desert // Radiocarbon. 1995. V. 37. № 1. P. 11–19.

15. Valladas H., Tisn?rat-Laborde N., Cachier H. еt al. Radiocarbon AMS dates for Paleolithic cave paintings // Radiocarbon. 2001. V. 43. № 2B. P. 977–986.

16. Кузьмин Я.В. Возникновение древнейшей керамики в Восточной Азии (геоархеологический аспект) // Российская археология. 2004. № 2.

17. Hillman G., Hedges R., Moore A., Colledge S., Pettitt P. New evidence of Lateglacial cereal cultivation at Abu Hureyra on the Euphrates // The Holocene. 2001. V. 11. № 4. P. 383–393.

18. Хотинский Н.А. Голоцен Северной Евразии. Опыт трансконтинентальной корреляции этапов развития растительности и климата. М.: Наука, 1977.

19. Encyclopedia of Quaternary Science / Ed. Elias S.A. V. 1–4. Amsterdam: Elsevier B.V., 2007.

20. Кинд Н.В. Геохронология позднего антропогена по изотопным данным. М.: Наука, 1974.

21. Ложкин А.В. Радиоуглеродное датирование в геохронологических и палеогеографических исследованиях на Северо-Востоке СССР // Региональная геохронология Сибири и Дальнего Востока. Новосибирск: Наука, 1987.

22. Базанова Л.И., Брайцева О.А., Мелекесцев И.В., Сулержицкий Л.Д. Катастрофические извержения Авачинского вулкана (Камчатка) в голоцене: хронология, динамика, геолого-геоморфологический и экологический эффекты, долгосрочный прогноз // Вулканология и сейсмология. 2004. № 6.

23. Svendsen J.I., Alexanderson H., Astakhov V.I. et al. Late Quaternary ice sheet history of northern Eurasia // Quaternary Science Reviews. 2004. V. 23. № 11–13. P. 1229–1271.

24. Kuzmin Y.V. The extinction of woolly mammoth (Mammuthus primigenius) and woolly rhinoceros (Coelodonta antiquitatis) in Eurasia: review of chronological and environmental issues // Boreas. 2010. V. 39. № 2. P. 247?261.

25. Вартанян С.Л. Остров Врангеля в конце четвертичного периода: геология и палеогеография. СПб.: Изд-во Ивана Лимбаха, 2007.

26. Stuart A.J., Kosintsev P.A., Higham T.F.G., Lister A.M. Pleistocene to Holocene extinction dynamics in giant deer and woolly mammoth // Nature. 2004. V. 431. № 7009. P. 684–689.

27. Janz L., Elston R.G., Burr G.S. Dating North Asian surface assemblages with ostrich eggshell: implications for palaeoecology and extirpation // Journ. of Archaeological Science. 2009. V. 36. № 9. P. 1982– 1989.

28. Wild E., Golser R., Hille P. et al. First 14C results from archaeological and forensic studies at the Vienna Environmental Research Accelerator // Radiocarbon. 1998. V. 40. № 1. P. 273–281.

29. Geyh M.A. Bomb radiocarbon dating of animal tissues and hair // Radiocarbon. 2001. V. 43. № 2B. P. 723– 730.

30. Kretschmer W., von Grundherr K., Kritzler K. et al. The mystery of the Persian mummy: original or fake? // Nuclear Instruments and Methods in Physics Research. Section B. 2004. V. 223–224. P. 672–675.

31. Zoppi U., Skopec Z., Skopec J. et al. Forensic applications of 14C bomb-pulse dating // Nuclear Instruments and Methods in Physics Research. Section B. 2004. V. 223– 224. P. 770–775.

32. Kouznetsov D.A., Ivanov A.A., Veletsky P.R. Effects of fi res and biofractionation of carbon isotopes on results of radiocarbon dating of old textiles: the Shroud of Turin // Journ. of Archaeological Science. 1996. V. 23. № 1. P. 109–121.

33. Jull A.J.T., Donahue D.J., Damon P.E. Factors affecting the apparent radiocarbon age of textiles: a comment on «Effects of fi res and biofractionation of carbon isotopes on results of radiocarbon dating of old textiles: the Shroud of Turin», by D.A. Kouznetsov et al. // Journ. of Archeological Science. 1996. V. 23. № 1. P. 157–160.

34. Van Strydonck M., Boudin M., De Mulder G. 14C dating of cremated bones: the issue of sample contamination // Radiocarbon. 2009. V. 51. № 2. P. 553–568.

May 12th, 2013

Все, что дошло до нас от язычества, окутано густым туманом; оно принадлежит к тому промежутку бремени, который мы не в силах измерить. Мы знаем, что оно древнее христианства, но на два года, на двести лет или на целое тысячелетие – здесь мы можем только гадать. Расмус Ниерап, 1806.

Многие из нас запуганы наукой. Радиоуглеродная датировка как один из результатов развития ядерной физики является примером такого феномена. Этот метод имеет важное значение для разных и независимых научных дисциплип, таких, как гидрология, геология, наука об атмосфере и археология. Однако мы оставляем понимание принципов радиоуглеродной датировки научным специалистам и слепо соглашаемся с их выводами из уважения к точности их оборудования и восхищения их интеллектом.

На самом деле принципы радиоуглеродной датировки поразительно просты и легкодоступны. Более того, представление о радиоуглеродной датировке как о «точной науке» является ошибочным, и, по правде говоря, лишь немногие ученые придерживаются такого мнения. Проблема в том, что представители многих дисциплин, пользующиеся радиоуглеродной датировкой в хронологических целях, не понимают ее природы и назначения. Давайте разберемся в этом.

Принципы радиоуглеродной датировки


Уильям Фрэнк Либби и члены его команды разработали принципы радиоуглеродной датировки в 1950-е годы. К 1960 году их работа была завершена, и в декабре этого года Либби был номинирован на Нобелевскую премию по химии. Один из ученых, участвовавших в его выдвижении, отметил:

«Редко случалось так, что одно открытие в области химии оказывало такое влияние на разные области человеческих знаний. Очень редко отдельное открытие привлекало столь широкий интерес».

Либби обнаружил, что нестабильный радиоактивный изотоп углерода (С 14) с предсказуемой скоростью распадается на стабильные изотопы углерода (С12 и С13). Все три изотопа встречаются в атмофере в естественном виде в следующих пропорциях; С12 – 98,89%, С13 – 1,11% и С14 – 0,00000000010%.

Стабильные изотопы углерода С12 и С13 образовались вместе со всеми остальными атомами, из которых состоит наша планета, то есть очень и очень давно. Изотоп С14 образуется в микроскопических количествах в результате еже- , дневной бобмардировки солнечной атмосферы космическими лучами. При соударении с определенными атомами космические лучи разрушают их, в результате чего нейтроны этих атомов переходят в свободное состояние в земной атмосфере.

Изотоп С14 образуется, когда один из таких свободных нейтронов сливается с ядром атома азота. Таким образом, радиоуглерод представляет собой «изотоп Франкенштейна», сплав разных химических элементов. Затем атомы С14, которые образуются с постоянной скоростью, подвергаются окислению и проникают в биосферу в процессе фотосинтеза и естественной цепочки питания.

В организмах всех живых существ отношение изотопов С12 и С14 равно атмосферному отношению этих изотопов в их географическом регионе и поддерживается скоростью их метаболизма. Однако после смерти организмы перестают накапливать углерод, и поведение изотопа С14 с этого момента становится интересным. Либби установил, что период полураспада С14 составляет 5568 лет; еще через 5568 лет распадается половина оставшихся атомов изотопа.

Таким образом, поскольку первоначальное отношение изотопов С12 и С14 является геологической постоянной, возраст образца можно определить, измерив количество остаточного изотопа С14. К примеру, если в образце присутствует некоторое первоначальное количество С14, значит, дата смерти организма определяется двумя периодами полураспада (5568 + 5568), что соответствует возрасту 10 146 лет.

В этом заключается основной принцип радиоуглеродной датировки как инструмента археологии. Радиоуглерод абсорбируется в биосфере; он прекращает накапливаться со смертью организма и распадается с определенной скоростью, которую можно измерить.

Иными словами, соотношение С 14 /С 12 постепенно падает. Таким образом мы получаем «часы», которые начинают идти с момента смерти живого существа. Очевидно, что эти часы действуют только для мертвых тел, которые когда-то были живыми существами. Например, их нельзя использовать для определения возраста вулканических пород.

Скорость распада С 14 такова, что половина этого вещества превращается обратно в N 14 в течение 5730±40 лет. Это и есть так называемый «период полураспада». За два периода полураспада, то есть за 11460 лет, останется только четверть изначального количества. Таким образом, если соотношение С 14 /С 12 в образце составляет четверть от соотношения в современных живых организмах, теоретически этот образец имеет возраст 11460 лет. Возраст же предметов старше 50 000 лет с помощью радиоуглеродного метода определить теоретически невозможно. Поэтому радиоуглеродное датирование не может показать возраст в миллионы лет. Если проба содержит С 14 , это уже свидетельствует о том, что ее возраст меньше миллионов лет.

Однако все не так просто. Во-первых, растения хуже усваивают углекислый газ, содержащий С 14 . Следовательно, они накапливают его меньше ожидаемого и поэтому при тестировании кажутся старше, чем есть на самом деле. Более того, различные растения по-разному усваивают С 14 , и на это тоже следует делать поправку. 2

Во-вторых, соотношение С 14 /С 12 в атмосфере не всегда было постоянным – например, оно снизилось с наступлением индустриальной эпохи, когда вследствие сжигания огромных количеств органического топлива высвободилась масса углекислого газа, обедненного С 14 . Соответственно, организмы, умершие в этот период, в рамках радиоуглеродного датирования кажутся старше. Затем произошло увеличение содержания С 14 О 2 , связанное с наземными ядерными испытаниями 1950-х годов, 3 вследствие чего организмы, умершие в этот период, стали казаться моложе, чем были на самом деле.

Измерения содержания С 14 в объектах, чей возраст точно установлен историками (например, зерно в гробницах с указанием даты захоронения) позволяют оценить уровень С 14 в атмосфере того времени и, таким образом, частично «подправить ход» радиоуглеродных «часов». Соответственно, радиоуглеродное датирование, проведенное с учетом исторических данных, может дать весьма плодотворные результаты. Однако даже с такой «исторической настройкой» археологи не считают даты, полученные радиоуглеродным методом, абсолютным – из-за частых аномалий. Они больше полагаются на методы датирования, связанные с историческими летописями.

За пределами исторических данных «настройка» «часов» С 14 не представляется возможной

В лаборатории


С учетом всех этих неопровержимых фактов крайне странно видеть в журнале «Радиоуглерод» (где публикуются результаты радиоуглеродных исследований по всему миру) следующее утверждение:

«Шесть уважаемых лабораторий выполнили 18 анализов возраста древесины из Шелфорда в графстве Чешир. Оценки варьируют от 26 200 до 60 000 лет (до настоящего времени), разброс составляет 34 600 лет».

Вот еще один факт: хотя теория радиоуглеродной датировки звучит убедительно, когда ее принципы применяются к лабораторным образцам, в игру вступает человеческий фактор. Это приводит к ошибкам, порой очень значительным. Кроме того, лабораторные образцы загрязняются фоновым излучением, изменяющим остаточный уровень С14, который подвергается измерению.

Как указал Ренфрю в 1973-м и Тейлор в 1986 году, метод радиоуглеродной датировки опирается на ряд необоснованных предположений, сделанных Либби во время разработки его теории. К примеру, в последние годы было много дискуссий о периоде полураспада С14, якобы составляющем 5568 лет. В наши дни большинство ученых сходится на том, что Либби ошибался и что период полураспада С14 на самом деле составляет примерно 5730 лет, Расхождение в 162 года приобретает большое значение при датировке образцов тысячелетней давности.

Но вместе с Нобелевской премией по химии к Либби пришла полная уверенность в его новой системе. Его радиоуглеродные датировки археологических образцов из Древнего Египта уже были датированы, поскольку древние египтяне тщательно следили за своей хронологией. К сожалению, радиоуглеродный анализ давал слишком заниженный возраст, в некоторых случаях на 800 лет меньше, чем по данным исторической летописи. Но Либби пришел к поразительному выводу:

«Распределение данных показывает, что древнеегипетские исторические датировки до начала второго тысячелетия до нашей эры слишком завышены и, возможно, превышают истинные на 500 лет в начале третьего тысячелетия до нашей эры».

Это классический случай научного самомнения и слепой, почти религиозной веры в превосходство научных методов над археологическими. Либби ошибался, радиоуглеродный метод подвел его. Теперь эта проблема решена, но самопровозглашенная репутация метода радиоуглеродной датировки по-прежнему превышает уровень его надежности.

Мои исследования показывают, что с радиоуглеродной датировкой связаны две серьезные проблемы, которые и в наши дни могут привести к большим недоразумениям. Это (1) загрязнение образцов и (2) изменение уровня С14 в атмосфере в течение геологических эпох.

Эталоны радиоуглеродного датирования. Значение эталона, принятого при расчёте радиоуглеродного возраста образца, прямо влияет на полученную величину. По результатам детального анализа опубликованной литературы установлено, что при радиоуглеродном датировании применялось несколько эталонов. Наиболее известные из них: эталон Андерсона (12,5 dpm/g), эталон Либби (15,3 dpm/g) и современный эталон (13,56 dpm/g).

Датирование ладьи фараона. Древесина ладьи фараона Sesostris III датировалась радиоуглеродным методом на основе трёх эталонов. При датировании древесины в 1949 году на основе эталона (12,5 dpm/g) получен радиоуглеродный возраст 3700 +/- 50 ВР лет. Позднее Либби датировал древесину на основе эталона (15,3 dpm/g) . Радиоуглеродный возраст не изменился. В 1955 году Либби повторно датировал древесину ладьи на основе эталона (15,3 dpm/g) и получил радиоуглеродный возраст 3621 +/-180 ВР лет. При датировании древесины ладьи в 1970 году применён эталон (13,56 dpm/g) . Радиоуглеродный возраст почти не изменился и составил 3640 ВР лет. Приведённые нами фактические данные по датированию ладьи фараона можно проверить по соответствующим ссылкам на научные публикации.

Цена вопроса. Получение практически одного и того же радиоуглеродного возраста древесины ладьи фараона: 3621-3700 ВР лет на основе применения трёх эталонов, значения которых отличаются существенно, физически невозможно. Применение эталона (15,3 dpm/g) автоматически даёт увеличение возраста датируемого образца на 998 лет, по сравнению с эталоном (13,56 dpm/g), и на 1668 лет, по сравнению с эталоном (12,5 dpm/g). Из этой ситуации имеется всего два выхода. Признание того, что:

При датировании древесины ладьи фараона Sesostris III были осуществлены манипуляции с эталонами (древесина вопреки декларациям, датировалась на основе одного и того же эталона);

Ладья фараона Sesostris III волшебная.

Заключение. Суть рассмотренных явлений, названных манипуляциями, выражается одним словом – фальсификация.

После смерти содержание C 12 остается постоянным, а содержание C 14 уменьшается

Загрязнение образцов


Мэри Левайн объясняет:

«Загрязнением называется наличие в образце органического материала чуждого происхождения, который не был сформирован вместе с материалом образца».

На многих фотографиях раннего периода радиоуглеродного анализа изображены научные специалисты, которые курят сигареты во время сбора или обработки образцов. Не слишком умно с их стороны! Как указывает Ренфрю, «уроните щепотку пепла на ваши образцы, подготовленные к анализу, и вы получите радиоуглеродный возраст табака, из которого была сделана ваша сигарета».

Хотя в наши дни такая методологическая некомпетентность считается недопустимой, археологические образцы все равно страдают от загрязнения. Известные виды загрязнений и способы борьбы с ними обсуждаются в статье Тейлора (1987). Он делит загрязнения на четыре главные категории: 1) физически устранимые, 2) растворимые в кислотах, 3) растворимые в щелочах, 4) растворимые в растворителях. Все эти загрязнения, если не устранить их, сильно влияют на лабораторное определение возраста образца.

X. Э. Гоув, один из изобретателей метода акселераторной масс-спектрометрии (AMS), сделал радиоуглеродную датировку Туринской плащаницы. Он пришел к выводу, что волокна ткани, использованные для изготовления плащаницы, датируются 1325 годом.

Хотя Гоув и его коллеги совершенно уверены в аутентичности своего определения, многие, по очевидным причинам, считают возраст Туринской плащаницы гораздо более почтенным. Гоув со своими единомышленниками дал достойный ответ всем критикам, и если бы мне пришлось делать выбор, то я бы рискнул сказать, что научная датировка Туринской плащаницы, скорее всего, является точной. Но в любом случае, ураган критики, обрушившийся на этот конкретный проект, показывает, как дорого может стоить ошибка при радиоуглеродной датировке и с каким подозрением некоторые ученые относятся к этому методу.

Утверждалось, что образцы могли подвергнуться загрязнению более молодым органическим углеродом; методы очистки могли пропустить следы современных загрязнений. Роберт Хеджес из Оксфордского университета отмечает, что

«нельзя совершенно исключить небольшую систематическую погрешность».

Интересно, назвал бы он расхождение датировок, полученных разными лабораториями по образцу древесины из Шелфорда, «небольшой систематической погрешностью»? Разве не похоже, что нас снова дурачат ученой риторикой и заставляют поверить в совершенство существующих методов?

Леонсио Гарза-Вальдес, безусловно, придерживается такого мнения по отношению к датировке Туринской плащаницы. Все древние ткани покрыты биопластической пленкой в результате жизнедеятельности бактерий, которая, по мнению Гарза-Вальдеса, сбивает с толку радиоуглеродный анализатор. Фактически возраст Туринской плащаницы вполне может составлять 2000 лет, так как ее радиоуглеродную датировку нельзя считать окончательной. Необходимы дальнейшие исследования. Интересно отметить, что Гоув (хотя он расходится во мнениях с Гарза-Вальдесом) согласен, что такая критика служит основанием для новых исследований.

Цикл радиоуглерода (14С) в атмосфере, гидросфере и биосфере Земли

Уровень С14 в земной атмосфере


Согласно «принципу одновременности» Либби, уровень С14 в любом конкретном географическом регионе является постоянным на всем протяжении геологической истории. Эта предпосылка была жизненно необходима для достоверности радиоуглеродного анализа на раннем этапе его развития. Действительно, для надежного измерения остаточного уровня С14 вам нужно знать, какое количество этого изотопа присутствовало в организме на момент его смерти. Но эта предпосылка, по мнению Ренфрю, является ошибочной:

«Однако теперь известно, что пропорциональное отношение радиоуглерода к обычному С12 не оставалось постоянным во времени и что до 1000 года до нашей эры отклонения так велики, что радиоуглеродные датировки могут заметно расходиться с действительностью».

Дендрологические исследования (изучение древесных колец) убедительно показывают, что уровень С14 в земной атмосфере за последние 8000 лет был подвержен значительным флуктуациям. Значит, Либби выбрал ложную константу и его исследования были основаны на ошибочных предположениях.

Возраст колорадской сосны, растущей в юго-западных регионах США, может достигать нескольких тысяч лет. Некоторые деревья, еще живые в наши дни, появились на свет 4000 лет назад. Кроме того, по бревнам, собранным в тех местах, где росли эти деревья, можно протянуть летопись древесных колец еще на 4000 лет в прошлое. Другими деревьями-долгожителями, полезными для дендрологических исследований, являются дуб и калифорнийская секвойя.

Как известно, ежегодно на срезе живого древесного ствола нарастает новое годичное кольцо. Подсчитав годичные кольца, можно узнать возраст дерева. Логично предположить, что уровень С14 в годичном кольце 6000-летнего возраста будет аналогичен уровню С14 в современной атмосфере. Но это не так.

К примеру, анализ годичных колец показал, что уровень С14 в земной атмосфере 6000 лет назад был существенно выше, чем сейчас. Соответственно, радиоуглеродные образцы, датируемые этим возрастом, оказались заметно моложе, чем на самом деле, на основании дендрологического анализа. Благодаря работе Ханса Суисса были составлены диаграммы коррекции уровня С14 для компенсации его флуктуации в атмосфере в разные периоды времени. Однако это значительно снизило достоверность радиоуглеродных датировок образцов, возраст которых превышает 8000 лет. У нас просто нет данных о содержании радиоуглерода в атмосфере до этой даты.

Ускорительный масс-спектрометр Университета Аризоны (г. Тусон, штат Аризона, США) производства компании National Electrostatics Corporation: а – схема, б – пульт управления и источник ионов С¯, в – ускорительный танк, г – детектор изотопов углерода. Фото Дж.С. Бурра

Про установки.

«Плохие» результаты?

Когда установленный «возраст» отличается от ожидаемого, исследователи поспешно находят повод объявить результат датирования недействительным. Широкая распространенность этого апостериорного доказательства показывает, что у радиометрического датирования имеются серьезные проблемы. Вудморапп приводит сотни примеров уловок, к которым прибегают исследователи, пытаясь объяснить «неподходящие» значения возраста.

Так, ученые пересмотрели возраст ископаемых останков Australopithecus ramidus. 9 Большинство образцов базальта, наиболее близко подходящего к слоям, в которых были найдены эти окаменелости, показало возраст около 23 миллионов лет по методу «аргон-аргон». Авторы решили, что эта цифра «слишком велика», если исходить из их представлений о месте этих окаменелостей в глобальной эволюционной схеме. Они рассмотрели базальт, располагавшийся подальше от окаменелостей, и, отобрав 17 из 26 образцов, получили приемлемый максимальный возраст в 4,4 миллиона лет. Остальные девять образцов показали опять-таки гораздо больший возраст, но экспериментаторы решили, что дело в загрязнении породы, и отвергли эти данные. Таким образом, на методы радиометрического датирования существенно влияет доминирующее в научных кругах мировоззрение «долгих эпох».

Аналогичная история связана с установлением возраста черепа примата (этот череп известен как образец KNM-ER 1470). 10, 11 Поначалу был получен результат 212–230 млн. лет, который, исходя из окаменелостей, был признан неверным («людей в то время еще не было»), после чего были предприняты попытки установления возраста вулканических пород в этом регионе. Через несколько лет, после опубликования нескольких различных результатов исследований, «сошлись» на цифре 2,9 млн. лет (хотя эти исследования включали в себя и отделение «хороших» результатов от «плохих» – как и в случае с Australopithecus ramidus).

Исходя из предвзятых представлений об эволюции человека, исследователи никак не могли примириться с мыслью, что череп 1470 «настолько стар». После изучения ископаемых останков свиньи в Африке антропологи с готовностью поверили в то, что череп 1470 на самом деле гораздо моложе. После того, как научная общественность утвердилась в этом мнении, дальнейшие исследования пород еще больше снизили радиометрический возраст этого черепа – до 1,9 млн. лет – и вновь отыскались данные, «подтверждающие» очередную цифру. Вот такая «игра в радиометрическое датирование»…

Мы не утверждаем, что эволюционисты сговорились подгонять все данные под наиболее удобный для себя результат. Конечно же, в норме дело обстоит совсем не так. Беда в другом: все данные наблюдения должны соответствовать доминирующей в науке парадигме. Эта парадигма – или, скорей, вера в миллионы лет эволюции от молекулы до человека – настолько прочно укрепилась в сознании, что никто не позволяет себе подвергнуть ее сомнению; напротив, говорят о «факте» эволюции. Вот под эту парадигму и должны подходить абсолютно все наблюдения. В результате исследователи, которые в глазах общественности выглядят «объективными и беспристрастными учеными», бессознательно отбирают именно те результаты наблюдений, которые согласуются с верой в эволюцию.

Нельзя забывать, что прошлое недоступно для нормального экспериментального исследования (серии опытов, проводимые в настоящем). Ученые не могут экспериментировать с событиями, происходившими когда-то. Измеряется не возраст пород – измеряются концентрации изотопов, причем их-то как раз можно измерить с высокой точностью. А вот «возраст» определяется уже с учетом предположений о прошлом, доказать которые невозможно.

Мы должны всегда помнить слова Бога, обращенные к Иову: «Где был ты, когда Я полагал основания земли?» (Иов 38:4).

Те, кто имеет дело с неписаной историей, собирают информацию в настоящем и таким образом пытаются воссоздать прошлое. При этом уровень требований к доказательствам гораздо ниже, чем в эмпирических науках, таких, как физика, химия, молекулярная биология, физиология и т.д.

Уильяме (Williams ), специалист по превращениям радиоактивных элементов в окружающей среде, установил 17 изъянов в методах изотопного датирования (по результатам этого датирования были изданы три весьма солидные труда, позволившие определить возраст Земли приблизительно в 4,6 миллиарда лет). 12 Джон Вудморапп остро критикует эти методы датирования 8 и разоблачает сотни связанных с ними мифов. Он убедительно доказывает, что немногие «хорошие» результаты, оставшиеся после того, как «плохие» данные были отфильтрованы, можно легко объяснить удачным совпадением.

«Какой возраст предпочитаете?»

В анкетах, предлагаемых радиоизотопными лабораториями, обычно спрашивается: «Каким, по-вашему, должен быть возраст данного образца?». Но что это за вопрос? В нем не возникало бы нужды, если бы техники датирования были абсолютно надежны и объективны. Вероятно, дело в том, что лаборатории знают о распространенности аномальных результатов и потому пытаются выяснить, насколько «хороши» получаемые ими данные.

Проверка методов радиометрического датирования

Если бы методы радиометрического датирования могли действительно объективно определять возраст пород, они срабатывали бы и в ситуациях, когда возраст нам точно известен; кроме того, различные методы давали бы согласованные результаты.

Методы датирования должны показывать достоверные результаты для предметов известного возраста

Есть целый ряд примеров, когда методы радиометрического датирования неверно устанавливали возраст пород (этот возраст был точно известен заранее). Один из таких примеров – калий-аргоновое «датирование» пяти потоков андезитовой лавы с горы Нгаурухо в Новой Зеландии. Хотя было известно, что лава один раз текла в 1949 году, три раза – в 1954 и еще один раз – в 1975, «установленные возрасты» варьировали от 0,27 до 3,5 млн. лет.

Все тот же ретроспективный метод породил следующее объяснение: когда порода отвердела, в ней остался «лишний» аргон из-за магмы (расплавленной породы). В светской научной литературе приводится масса примеров тому, как избыток аргона приводит к «лишним миллионам лет» при датировании пород известного исторического возраста. 14 Источником избыточного аргона, по всей видимости, служит верхняя часть мантии Земли, расположенная непосредственно под земной корой. Это вполне соответствует теории «молодой Земли» – у аргона было слишком мало времени, он просто не успел высвободиться. Но если избыток аргона привел к столь вопиющим ошибкам в датировании пород известного возраста, почему мы должны доверять этому же методу при датировании пород, возраст которых неизвестен ?!

Другие методы – в частности, использование изохрон, – включают в себя различные гипотезы о начальных условиях; но ученые все больше убеждаются в том, что даже такие «надежные» методы тоже приводят к «плохим» результатам. И тут снова выбор данных основан на предположении исследователя о возрасте той или иной породы.

Доктор Стив Остин (Steve Austin) , геолог, взял пробы базальта из нижних слоев Большого Каньона и из потоков лавы на краю каньона. 17 По эволюционной логике, базальт у края каньона должен быть на миллиард лет моложе базальта из глубин. Стандартный лабораторный анализ изотопов с применением изохронного датирования «рубидий-стронций» показал, что сравнительно недавний поток лавы на 270 млн. лет старше базальта из недр Большого Каньона – что, конечно же, абсолютно невозможно!

Проблемы методики

Изначально идея Либби опиралась на следующие гипотезы:

  1. 14C образуется в верхних слоях атмосферы под действием космических лучей, затем перемешивается в атмосфере, входя в состав углекислого газа. При этом процентное содержание 14C в атмосфере является постоянным и не зависит ни от времени, ни от места, несмотря на неоднородность самой атмосферы и распад изотопов.
  2. Скорость радиоактивного распада является постоянной величиной, измеряемой периодом полураспада в 5568 лет (предполагается, что за это время половина изотопов 14C превращается в 14N).
  3. Животные и растительные организмы строят свои тела из углекислоты, добываемой из атмосферы, и при этом живые клетки содержат тот же процент изотопа 14C, что находится в атмосфере.
  4. По смерти организма его клетки выходят из цикла углеродного обмена, но атомы изотопа 14C продолжают превращаться в атомы стабильного изотопа 12C по экспоненциальному закону радиоактивного распада, что и позволяет рассчитать время, прошедшее со времени смерти организма. Это время называется «радиоуглеродным возрастом» (или, для краткости, «РУ-возрастом»).

У этой теории, по мере накопления материала, стали появляться контрпримеры: анализ недавно умерших организмов иногда даёт очень древний возраст, или, наоборот, проба содержит столь огромное количество изотопа, что вычисления дают отрицательный РУ-возраст. Некоторые заведомо древние предметы имели молодой РУ-возраст (такие артефакты объявлялись поздними подделками). В итоге оказалось, что РУ-возраст далеко не всегда совпадает с истинным возрастом в тех случаях, когда истинный возраст можно проверить. Такие факты приводят к обоснованным сомнениям в случаях, когда РУ-метод применяется для датирования органических предметов неизвестного возраста, и РУ-датировка не может быть проверена. Случаи ошибочного определения возраста объясняются следующими известными недостатками теории Либби (эти и иные факторы проанализированы в книге М. М. Постникова «Критическое исследование хронологии древнего мира, в 3-х томах» ,- М.: Крафт+Леан, 2000, в томе 1, стр. 311-318, написанной в 1978 году):

  1. Непостоянство процентного содержания 14C в атмосфере. Содержание 14C зависит от космического фактора (интенсивность солнечного излучения) и земного (поступление в атмосферу «старого» углерода из-за горения и гниения древней органики, возникновения новых источников радиоактивности, колебаний магнитного поля Земли). Изменение этого параметра на 20 % влечёт ошибку в РУ-возрасте почти в 2 тысячи лет.
  2. Не доказано однородное распределение 14C в атмосфере. Скорость перемешивания атмосферы не исключает возможности существенных различий содержания 14C в разных географических регионах.
  3. Скорость радиоактивного распада изотопов может быть определена не вполне точно. Так, со времён Либби период полураспада 14C по официальным справочникам «изменился» на сотню лет, то есть, - на пару процентов (этому соответствует изменение РУ-возраста на полторы сотни лет). Высказывается предположение, что значение периода полураспада значительно (в пределах нескольких процентов) зависит от экспериментов, в которых он определяется.
  4. Изотопы углерода не являются вполне эквивалентными , клеточные мембраны могут использовать их избирательно: некоторые абсорбировать 14C, некоторые, наоборот, избегать его. Поскольку процентное содержание 14C ничтожно (один атом 14C к 10 миллиардам атомов 12C), даже незначительная избирательность клетки в изотопном отношении влечёт большое изменение РУ-возраста (колебание на 10 % приводит к ошибке примерно 600 лет).
  5. По смерти организма его ткани не обязательно выходят из углеродного обмена , участвуя в процессах гниения и диффузии.
  6. Содержание 14C в предмете может быть неоднородным. Со времени Либби физики-радиоуглеродчики научились очень точно определять содержание изотопа в образце; заявляют даже, что они способны пересчитать отдельные атомы изотопа. Разумеется, такой подсчёт возможен только для небольшого образца, но в этом случае возникает вопрос - насколько точно этот небольшой образец представляет весь предмет? Насколько однородно содержание изотопа в нём? Ведь ошибки в несколько процентов приводят к столетним изменениям РУ-возраста.

Резюме


Радиоуглеродная датировка – это развивающийся научный метод. Однако на каждом этапе его развития ученые безоговорочно поддерживали его общую достоверность и замолкали лишь после выявления серьезных ошибок в оценках или в самом методе анализа. Не стоит удивляться ошибкам, если учитывать количество переменных, которые должен принять во внимание ученый: атмосферные флуктуации, фоновое излучение, рост бактерий, загрязнение и человеческая ошибка.

Как часть представительного археологического исследования, радиоуглеродная датировка по-прежнему имеет крайне важное значение; просто ее нужно поместить в культурную и историческую перспективу. Разве ученый имеет право сбрасывать со счетов противоречащие археологические свидетельства только потому, что его радиоуглеродная датировка указывает на другой возраст? Это опасно. Фактически многие египтологи поддержали предположение Либби о том, что хронология Древнего Царства составлена неправильно, так как это было «научно доказано». На самом деле Либби ошибался.

Радиоуглеродная датировка полезна в качестве дополнения к другим данным, и в этом заключается ее сильная сторона. Но пока не наступит день, когда все переменные окажутся под контролем, а все ошибки будут устранены, радиоуглеродные датировки не получат окончательного слова на археологических раскопках.
источники Глава из книги К. Хэма, Д. Сарфати, К. Виланда под ред. Д. Баттена «КНИГА ОТВЕТОВ: РАСШИРЕННАЯ И ОБНОВЛЕННАЯ»
Грэм Хэнкок: Следы богов . М., 2006. Стр. 692-707.

В том числе и по этим причинам, описанным выше «всплывают» и возникают загадки Оригинал статьи находится на сайте ИнфоГлаз.рф Ссылка на статью, с которой сделана эта копия -

Энциклопедичный YouTube

    1 / 5

    Радиоуглеродное датирование, часть 1

    Радиоуглеродное датирование, часть 2

    Радиоизотопное датирование: надежны ли основы методики?

    Туринская плащаница - радиоуглеродный анализ

    Антикитерский механизм правда и вымысел

    Субтитры

    В этом видео я хотел бы остановиться, во-первых, на том, как появляется углерод-14 и как он проникает во все живое. А затем, либо в этом, либо в следующих видео, мы поговорим о том, как его используют для датирования, то есть, как с его помощью можно обнаружить, что этой кости 12 000 лет, или что этот человек умер 18 000 лет назад - все, что угодно. Нарисуем Землю. Это поверхность Земли. Точнее, лишь малая ее часть. Потом идет атмосфера Земли. Я нарисую ее желтым. Вот здесь у нас атмосфера. Подпишем ее. И 78% - самый распространенный элемент в нашей атмосфере - азот. Здесь 78% азота. Я запишу: «азот». Его обозначение - это N. В нем 7 протонов и 7 нейтронов. Так что атомная масса равна примерно 14. А самый распространенный изотоп азота… Мы разбираем понятие изотопа в видео по химии. В изотопе протоны определяют, какой это элемент. Но вот этот номер может меняться в зависимости от имеющегося числа нейтронов. Отличающиеся таким образом варианты данного элемента называются изотопами. Я представляю себе это как версии одного элемента. В любом случае, у нас есть атмосфера, а также исходящее от нашего солнца так называемое космическое излучение, но, фактически, это не излучение. Это космические частицы. Можно рассматривать их как одиночные протоны, что то же самое, что и ядра водорода. Это также могут быть альфа-частицы, что то же самое, что и ядра гелия. Иногда бывают также электроны. Они прилетают, потом сталкиваются с составляющими нашей атмосферы и, по сути, формируют нейтроны. Итак, образуются нейтроны. Обозначим нейтрон малой буквой n, тогда 1 - его массовое число. Мы ничего не пишем, потому что здесь нет протонов. В отличие от азота, где было 7 протонов. Так что это, строго говоря, не элемент. А субатомная частица. Так вот, формируются нейтроны. И время от времени… Скажем прямо, это не похоже на типичную реакцию. Но время от времени один из этих нейтронов сталкивается определенным образом с атомом азота-14. Выбивает один из протонов азота и, по сути, сам встает на его место. Сейчас объясню. Он выбивает один из протонов. Теперь вместо семи протонов у нас получится 6. Но этот номер 14 не сменится на 13, потому что произошла замена. Так что здесь останется 14. Но теперь, так как здесь всего 6 протонов, это уже, по определению, не азот. Теперь это углерод. А тот протон, который был выбит, будет излучен. Я изображу это другим цветом. Здесь плюс. Протон, испущенный в пространство… Можно называть его водородом 1. Каким-то образом он может притянуть электрон. Если он не получит электрон, это просто будет ион водорода, положительный ион, в любом случае, или ядро водорода. Данный процесс - не типичное явление, но оно случается время от времени - именно так образуется углерод-14. Так что вот здесь углерод-14. По сути, вы можете рассматривать это как азот-14, где один из протонов заменен нейтроном. Интересно то, что он постоянно образуется в нашей атмосфере, не в огромных количествах, но в заметных. Запишу это. Постоянное формирование. Хорошо. Теперь… Я хочу, чтобы вам было понятно. Посмотрим на периодическую таблицу. По определению у углерода 6 протонов, но типичный, самый распространенный изотоп углерода - это углерод-12. Углерод-12 наиболее распространен. Большая часть углерода в нашем теле - это углерод-12. Но интересно то, что там образуется малая доля углерода-14, а затем этот углерод-14 может соединиться с кислородом и образовывать диоксид углерода. Затем диоксид углерода поглощается атмосферой и океаном. Его могут захватить растения. Когда говорят о связывании углерода, фактически, имеют в виду использование энергии солнечного света для захвата газообразного углерода и превращения его в органическую ткань. Так что углерод-14 образуется постоянно. Он проникает в океаны, он в воздухе. Смешивается со всей атмосферой. Запишем: океаны, воздух. А затем попадает в растения. Растения, фактически, состоят из этого связанного углерода, который был захвачен в газообразной форме и переведен, можно так сказать, в твердую форму, в живую ткань. Например, из этого состоит древесина. Углерод встраивается в растения, а потом оказывается в тех, кто ест растения. Это можем быть мы. Почему это интересно? Я уже объяснил механизм, даже если углерод-12 - самый распространённый изотоп, частично наше тело, за время жизни накапливает и углерод-14. Интересно то, что вы можете получать этот углерод-14 только пока живёте и пока поглощаете пищу. Потому что как только вы умираете и вас хоронят под землёй, углерод-14 больше никак не может становиться частью ваших тканей, потому что вы больше не едите ничего содержащего углерод-14. И как только вы умираете, вы больше не получаете пополнения углерода-14. И тот углерод-14, который у вас был в момент смерти, будет распадаться путём β-распада - мы это уже изучали - обратно в азот-14. То есть процесс идёт вспять. Итак, он распадётся до азота-14, и в β-распаде выделяется электрон и анти-нейтрино. Я сейчас не буду вдаваться в детали. По сути, вот, что здесь происходит. Один из нейтронов превращается в протон, и в процессе реакции испускает вот это. Почему это интересно? Как я сказал, пока вы живёте, происходит поступление углерода-14. Углерод-14 постоянно распадается. Но как только вас не станет и вы больше не будете потреблять растения, или дышать в атмосфере, если вы сами - растение, захватывать углерод из воздуха - что и касается растений… Когда растение умирает, оно больше не потребляет из атмосферы диоксид углерода и не встраивает его в ткани. Углерод-14 в этой ткани «замораживается». Затем происходит его распад с определённой скоростью. Потом ее можно использовать для определения того, как давно умерло существо. Скорость, с которой это происходит, скорость распада углерода-14 до исчезновения его половины или распада наполовину примерно 5 730 лет. Это называется периодом полураспада. Мы говорим об этом в других видео. Это называется периодом полураспада. Я хочу, чтобы вам это было понятно. Неизвестно, которая из половин исчезла. Это вероятностное понятие. Вы лишь можете предположить, что весь углерод-14 слева распадётся, а весь углерод-14 справа не распадётся в течение этих 5 730 лет. По сути, это значит, что любой из данных атомов углерода-14 имеет 50-процентный шанс распасться до азота-14 в течение 5 730 лет. То есть через 5 730 лет примерно половина из них распадётся. Почему это важно? Если вы знаете, что все живые существа имеют определённую долю углерода-14 в своих тканях как часть составляющих их веществ, и затем находите какую-либо кость… Допустим, вот вы нашли кость во время археологических раскопок. Вы скажете, что эта кость имеет половину углерода-14 по сравнению с живыми существами вокруг вас. Было бы совершенно разумно предположить, что этой кости должно быть 5 730 лет. Ещё лучше, если вы копнете ещё глубже и найдёте ещё одну кость. Может, на пару футов глубже. И обнаружите, что в ней содержится 1/4 углерода-14 от того, что можно было бы найти в живом существе. Тогда сколько ему лет? Если в ней всего 1/4 углерода-14, он прошёл через 2 полураспада. После одного полураспада у него осталось бы 1/2 углерода. Затем, после второго полураспада, половина от этого также превратится в азот-14. Так что здесь произошло 2 периода полураспада, что дает 2 раза по 5 730 лет. Каков будет вывод о возрасте предмета? Плюс-минус 11 460 лет. Subtitles by the Amara.org community

Физические основания

В 2015 году учёные из Имперского колледжа Лондона подсчитали, что дальнейшее использование углеводородов сведёт на нет радиоуглеродный метод.

Понятно, чтобы объявить тот или иной артефакт достоянием какой-то працивилизации, необходимо установить его возраст, определив точную дату создания предмета. Однако современные археологи и историки способны это сделать лишь в очень редких случаях. Подавляющее большинство археологических находок датируются приблизительно.

Радиоуглеродный метод датировки в археологи
Для датировки найденных предметов применяются несколько методов, но, к сожалению, каждый из них не свободен от недостатков, особенно применительно к поискам следов прадревних культур.

Радиоуглеродный метод:

  1. - Образование радиоуглерода 14С
  2. - Распад 14С
  3. - Условие равновесия для живых организмов и неравновесие для умерших организмов, в которых радиоуглерод распадается без пополнения извне

радиоуглеродный метод датировки

В настоящее время наиболее известным и часто применяемым является радиоуглеродный метод, который работает с радиоактивным изотопом углерода С14. Этот метод разработал в 1947 г. американский физикохимик, лауреат Нобелевской премии У.Ф. Либби. Суть метода заключается в том, что радиоактивный изотоп углерода С14 образуется в атмосфере под действием космического излучения. Вместе с обычным углеродом С12 он находится в органической ткани всего живого. Когда организм умирает, обмен его углерода с атмосферой прекращается, количество С14 уменьшается при разложении и не восстанавливается. Определение соотношения С14/С12 в образцах при известной и постоянной скорости разложения С14 (5568±30 лет) и даёт возможность установить возраст объекта, или, точнее, срок, который прошёл после его смерти.

лаборатории радиоуглеродного анализа

Казалось бы, всё ясно и просто, однако при таком способе датировки образцов многие даты оказываются ошибочными вследствие загрязнённости объектов или ненадёжности их связи с другими археологическими находками. Поэтому многолетняя практика применения радиоуглеродных измерений заставила сомневаться в их точности. Американский археолог У. Брей и английский историк Д. Трамп пишут: «Во-первых, полученные даты никогда не являются точными, только в двух случаях из трех правильная дата укладывается в этом интервале; во-вторых, скорость распада С14 основывается на периоде полураспада 5568±30 лет, и сейчас становится ясно, что это значение скорости полураспада слишком мало. Значение решено не менять, пока не будет принята новая международная норма; и, в третьих, тезис о неизменности скорости полураспада С14 тоже встречает возражения». Сравнивая результаты этого метода (по одним и тем же образцам) с результатами дендрохронологического анализа (то есть по кольцам среза деревьев), уже упомянутые исследователи делают вывод, что к датировке радиоуглеродным методом можно относиться с доверием только для последних 2000 лет.

туринская плащаница фото, самый знаменитый объект для исследований методом радиоуглеродного анализа

Российский ученый Ф. Завельский говорит, радиоуглеродный метод датировки зависит от справедливости принятых apriori в науке допущений:

  • - допущение интенсивность космического из-лучения, падающего на Землю десятки тысяч лет, не менялась;
  • - радиоуглерод, земной атмосферы облучался нейтронами, «разбавлялся» стабильным углеродом всегда одинаково;
  • - удельная активность углерода в атмосфере не зависит от долготы и широты местности и её высоты над уровнем моря;
  • - содержание радиоуглерода в живых организмах было таким же, как и в атмосфере на протяжении обозримой истории. Если одно из принятых допущений окажется неверным, (а если сразу несколько) то результаты радиоуглеродного метода вообще могут стать иллюзорными.
  • Исследователь А. Скляров о применении радиоуглеродного анализа пишет так: «Ненавязчивое желание» лабораторий радиоуглеродных исследований заранее получить от историков и археологов «ориентировочный возраст образца» порождено тщательно скрываемой погрешностью самого метода и носит характер «от лукавого» .
  • Таким образом, для хотя бы ориентировочной датировки археологам приходится параллельно применять другие методы, прибегая к простому сравнению результатов, исходя из того, какая датировка лучше подходит для той или иной находки или всего археологического комплекса. Понятно, что точность датировок в этом случае оставляет желать лучшего.

Туринская плащаница: позитив и негатив

Исследование фрагментов Туринской плащаницы - один из наиболее известных случаев применения радиоуглеродного метода датировки объекта исследований.
Радиоуглеродный анализ датировал плащаницу периодом XI - XIII вв. Скептики считают такой результат подтверждением того, что плащаница - средневековая подделка. Сторонники же подлинности реликвии считают полученные данные результатом загрязнения плащаницы углеродом при пожаре в XVI в.

Понятно, чтобы объявить тот или иной артефакт достоянием какой-то працивилизации, необходимо установить его возраст, определив точную дату создания предмета. Однако современные археологи и историки способны это сделать лишь в очень редких случаях. Подавляющее большинство археологических находок датируются приблизительно. Радиоуглеродный метод датировки в археологи Для датировки найденных предметов применяются несколько методов, но, к сожалению, каждый из них не свободен от недостатков, особенно применительно к поискам следов прадревних культур. Радиоуглеродный метод: - Образование радиоуглерода 14С - Распад 14С - Условие равновесия для живых организмов и неравновесие для умерших организмов, в которых радиоуглерод распадается без пополнения извне радиоуглеродный…

Обзор